Biomedical Engineering Reference
In-Depth Information
technologies spanning from new detectors and sources, fiber optics, integrated
micromechanical systems, new fabrication technologies, and biochemical contrasts.
It consequently increases its presence in clinical studies and applications. At
the same time still leaves numerous challenges and research opportunities across
multiple fields between basic sciences, engineering, and clinical implementations.
Considering that classical microscopy is a gold standard for pathological assess-
ment, endomicroscopy has a bright future in all new methods of development,
multidisciplinary research, and finally technology translation to everyday use.
Acknowledgements I would like to thank Dr. Mark Pierce and Dr. Michal Pawlowski for a
tremendous help, many suggestions, and discussions over the course of work to write this chapter.
References
1. J. Bailley, The endoscope. Gastrointest. Endosc. 65 , 886-893 (2007)
2. D. Panescu, Emerging Technologies: an imaging pill for gastrointestinal endoscopy. IEEE
Eng. Med. Biol. Mag. July/August, 12-14 (2005)
3. M.A. Kara, J.J. Bergman, Autofluorescence imaging and narrow-band imaging for the
detection of early neoplasia in patients with Barrett's esophagus. Endoscopy 38 (6), 627-631
(2006)
4. H. Inoue, K. Sasajima, M. Kaga, S. Sugaya, Y. Sato, Y. Wada, M. Inui, H. Satodate, S.E.
Kudo, S. Kimura, S. Hamatani, A. Shiokawa, Endoscopic in vivo evaluation of tissue atypia
in the esophagus using a newly designed integrated endocytoscope: a pilot trial. Endoscopy
38 , 891-895 (2006)
5. R.T. Bryan, L.J. Billingham, D.M.A. Wallace, Narrow-band imaging flexible cystoscopy in
the detection of recurrent urothelial cancer of the bladder. BJU Int. 101 (6), 702-705 (2008)
6. E.V. Cauberg, D.M. de Bruin, D.J. Faber, T.G. van Leeuwen, J.J.M.C.H. de la Rosette, T.M. de
Reijke, A new generation of optical diagnostics for bladder cancer: technology, diagnostic
accuracy, and future applications. Eur. Urol. 56 , 287-297 (2009)
7. A.L. Clark, A.M. Gillenwater, T.G. Collier, R. Alizadeh-Naderi, A.K. El-Naggar,
R.R. Richards-Kortum, Confocal microscopy for real-time detection of oral cavity neoplasia.
Clin. Cancer Res. 9 , 4714-4721 (2003)
8. F. Helmchen, W. Denk, Deep tissue two-photon microscopy. Nat. Methods 2 , 932-940 (2005)
9. V. Becker, T. Vercauteren, C.H. von Weyhern, C. Prinz, R.M. Schmid, A. Meining, High-
resolution miniprobe-based confocal microscopy in combination with video mosaicing.
Gastrointest. Endosc. 66 (5), 1001-1007 (2007)
10. B.E. Bouma, S.H. Yun, B.J. Vakoc, M.J. Suter, G.J. Tearney, Fourier-domain optical
coherence tomography: recent advances toward clinical utility. Curr. Opin. Biotechnol. 20 ,
111-118 (2009)
11. J. Pawley, Handbook of Biological Confocal Microscopy , 3rd edn. (Springer, New York, 2006)
12. A.L. Polglase, W.J. McLaren, S.A. Skinner, R. Kiesslich, M.F. Neurath, P.M. Delaney, A
fluorescence confocal endomicroscope for in vivo microscopy of the upper- and the lower-GI
tract. Gastrointest. Endosc. 62 , 686-695 (2005)
13. K.C. Maitland, A.M. Gillenwater, M.D. Williams, A.K. El-Naggar, M.R. Descour,
R.R. Richards-Kortum, In vivo imaging of oral neoplasia using a miniaturized fiber optic
confocal reflectance microscope. Oral Oncol. 44 , 1059-1066 (2008)
14. H. Bao, J. Allen, R. Pattie, R. Vance, M. Gu, Fast handheld two-photon fluorescence
microendoscope with a 475 x 475micron field of view for in vivo imaging. Opt. Lett. 33 ,
1333-1335 (2008)
Search WWH ::




Custom Search