Biomedical Engineering Reference
In-Depth Information
Z
L
F es .y.x 0 //.x x 0 /dx 0
M.x/ D .1=L/
x 0 Dx
Z
L
.x x 0 /=Œy.x 0 / C .t="/ 2 dx 0 :
D " 0 W
(2.41)
x 0 Dx
Introducing ( 2.40 )into( 2.39 ), the cantilever bending equation becomes
Z
L
d 2 y=dx 2
D V 2 .6" 0 = Et 3 /
.x x 0 /=Œy.x 0 / C .t="/ 2 dx 0 :
(2.42)
x 0 D
x
Considering further that y.x 0 / h, the solution of ( 2.42 ) can be approximated by
y.x/ D h V 2 .6" 0 = Et 3 /ŒL 2 x 2 =4 Lx 3 =6 C x 4 =24=Œh C .t="/ 2 ;
(2.43)
and the maximum deflection, which corresponds to x D L,isgivenby
y max D y.L/ D h V 2 .3" 0 =4 Et 3 /L 4 =Œh C .t="/ 2 :
(2.44)
The deflection due to a force concentrated in a single point x ( Petersen 1978 )has
the expression
y conc D x 2 .3L x/ Wf .x/dx=6 EI ;
(2.45)
whereas if the electrostatic force is distributed uniformly along the cantilever, the
corresponding deflection is
Z
L
.3L x/x 2 f es .x/.6 EI / 1 dx;
y unif D W
(2.46)
0
where f es .x/ D ." 0 =2/V 2 =Œt y.x/ 2 is the electrostatic force per unit area.
For a square-law cantilever bending y.x/ D .x=L/ 2 y max , the deflection in 2.46
is found by solving numerically the equation
" 0 WL 4 V 2 =2 EIh 3
D .4 N y max /Œ.2=3/.1 y max / tanh 1 . N y max / 1=2 =. N y max / 1=2
ln.1 y max /=3. N y max / 1 ;
(2.47)
where N y max D y max =h is the normalized deflection. Figure 2.24 represents the
voltage dependence of normalized deflection calculated from ( 2.47 ).
The cantilever is in dynamical equilibrium when the elastic F el and electrostatic
forces are balanced, i.e., when
Search WWH ::




Custom Search