Biomedical Engineering Reference
In-Depth Information
increases in static magnetic field strengths, more sensitive cryoprobe
technology, relaxation-compensation techniques and alternative sampling
methods, as well as protein preparation techniques and isotope-labelling
schemes have all contributed to the success of NMR in this respect. The
publication of a number of polytopic a-helical proteins, including a seven-
transmembrane receptor indicates that solution NMR should be capable of
tackling mammalian GPCRs. The ability of NMR to study functionally
relevant properties, in particular dynamics, on a per-atom scale, should
provide extremely interesting data in this respect. Combined with the use of
more native-like membrane mimics, this promises to provide highly relevant
functional insights. Whilst GPCR structure determination remains a future
goal, functional studies, including on GPCRs, are already possible and provide
useful and complementary information to other biophysical techniques.
Consequently, while limitations remain, particularly in the area of protein
expression, isotope labelling and an upper-limit to complex size of roughly
y150 kDa, the contributions to membrane protein study from solution-state
NMR, both now and in the future, look assured to be extremely valuable.
References
1. C. R. Sanders and F. S ¨ nnichsen, Magn. Reson. Chem., 2006, 44, S24.
2. S. White, http://blanco.biomol.uci.edu/mpstruc/listAll/list
3. http://www.pdb.org/pdb/statistics/holdings.do
4. X. Deupi and J. Standfuss, Curr. Opin. Struct. Biol., 2011, 21, 551.
5. S. H. White, Protein Sci., 2004, 13, 1948.
6. S. H. White, Nature, 2009, 459, 344.
7. H. J. Kim, S. C. Howell, W. D. Van Horn, Y. H. Jeon and C. R. Sanders,
Prog. Nucl. Magn. Reson. Spectrosc., 2009, 55, 335.
8. D. E. Warschawski, http://www.drorlist.com/nmr/MPNMR.html
9. S. J. Opella and F. M. Marassi, Chem. Rev., 2004, 104, 3587.
10. A. McDermott, Annu. Rev. Biophys., 2009, 38, 385.
11. S. Tapaneeyakorn, A. D. Goddard, J. Oates, C. L. Willis and A. Watts,
Biochim. Biophys. Acta, 2011, 1808, 1462.
12. C. Fern´ ndez, C. Hilty, G. Wider, P. G ¨ ntert and K. W ¨ thrich, J. Mol.
Biol., 2004, 336, 1211.
13. S. Hiller, R. G. Garces, T. J. Malia, V. Y. Orekhov, M. Colombini and G.
Wagner, Science, 2008, 321, 1206.
14. P. M. Hwang, W.-Y. Choy, E. I. Lo, L. Chen, J. D. Forman-Kay, C. R. H.
Raetz, G. G. Priv´, R. E. Bishop and L. E. Kay, Proc. Natl. Acad. Sci. U. S.
A., 2002, 99, 13560.
15. A. Arora, F. Abildgaard, J. H. Bushweller and L. K. Tamm, Nat. Struct.
Biol., 2001, 8, 334.
16. Y. Zhou, T. Cierpicki, R. H. F. Jimenez, S. M. Lukasik, J. F. Ellena, D. S.
Cafiso, H. Kadokura, J. Beckwith and J. H. Bushweller, Mol. Cell, 2008,
31, 896.
Search WWH ::




Custom Search