Biomedical Engineering Reference
In-Depth Information
[9] Li F, Hashimura Y, Pendleton R, Harms J, Collins E, Lee B. A systematic approach for
scaled-down model development and characterization of commercial cell culture processes.
Biotechnol Prog 2006;22:696-703.
[10] Kaltenbrunner O, Giaverini O, Woehle D, Asenjo JA. Application of chromatographic
theory for process characterization towards validation of an ion-exchange operation.
Biotechnol Bioeng 2007;98:201-210.
[11] Mollerup JM, Hansen TB, Kidal S, Staby A. Quality by design: thermodynamic modeling
of chromatographic separation of proteins. J Chromatogr A 2008;1177(2):200-206.
[12] Wang X, Germansderfer A, Harms J, Rathore AS. Using statistical analysis for setting
process validation acceptance criteria for biotech products. Biotech Prog 2007;23:55-60.
[13] ICH Guidance for Industry: Q5E Comparability of Biotechnological/Biological Products
Subject to Changes in Their Manufacturing Process. 2005. www.fda.gov/cber/gdlns/ich-
compbio.htm.
[14] Schmidt FR. Optimization and scale up of industrial fermentation processes. App Microbiol
Biotechnol 2005;65:425-435.
[15] Nienow AW. Reactor engineering in large scale animal cell culture. Cytotechnology 2006;
50:9-33.
[16] Hewitt CJ, Nienow AW. The scale-up of microbial batch and fed-batch fermentation
processes. Adv Appl Microbiol 2007;62:105-135.
[17] U.S. Food and Drug Administration. Guideline on General Principles of Process Validation.
Rockville, MD: U.S. Food and Drug Administration; 1987. Draft Guidance, November
2008. http://www.fda.gov/CDER/GUIDANCE/8019dft.pdf.
[18] U.S. Food and Drug Administration. Current Good Manufacturing Practice for Finished
Pharmaceuticals. Code of Federal Regulations. Title 21, Vol. 4, Part 211. Washington, DC:
U.S. Government Printing Office; 2005. www.fda.gov/cder/dmpq/cgmpregs.htm.
[19] Hammersley JM, Handscomb DC. Monte Carlo Methods. New York: John Wiley & Sons;
1964.
Search WWH ::




Custom Search