Biomedical Engineering Reference
In-Depth Information
115. Stéphanou, A., McDougall, S.R., Anderson, A.R.A., Chaplain, M.A.J.: Mathematical
modelling of the influence of blood rheological properties upon adaptative tumour-induced
angiogenesis. Math. Comput. Model. 44, 96-123 (2006)
116. Stokes, C.L., Lauffenburger, D.A.: Analysis of the roles of microvessel endothelial cell
random motility and chemotaxis in angiogenesis. J. Theor. Biol. 152, 377-403 (1991)
117. Street, J., Winter, D., Wang, J.H., Wakai, A., McGuinness, A., Redmond, H.P.: Is human
fracture hematoma inherently angiogenic? Clin. Orthop. 378, 224-237 (2000)
118. Street, J.T., Wang, J.H., Wu, Q.D., Wakai, A., McGuinness, A., Redmond, H.P.: The
angiogenic response to skeletal injury is preserved in the elderly. J. Orthop. Res. 19,
1057-1066 (2001)
119. Street, J., Bao, M., deGuzman, L., Bunting, S., Peale, F.V. Jr, Ferrara, N., Steinmetz, H.,
Hoeffel, J., Cleland, J.L., Daugherty, A., van Bruggen, N., Redmond, H.P., Carano, R.A.,
Filvaroff, E.H.: Vascular endothelial growth factor stimulates bone repair by promoting
angiogenesis and bone turnover. Proc. Natl. Acad. Sci. USA 99, 9656-9661 (2002)
120. Torpy, J.M., Lynm, C., Glass, R.M.: JAMA patient page. Burn Inj JAMA 302:1828 (2009)
121. Tsopanoglou, N.E., Andriopoulou, P., Maragoudakis, M.E.: On the mechanism of thrombin-
induced angiogenesis: involvement of alphavbeta3-integrin. Am. J. Physiol. Cell. Physiol.
283, C1501-C1510 (2002)
122. Willett, C.G., Boucher, Y., di Tomaso, E., Duda, D.G., Munn, L.L., Tong, R.T., Chung,
D.C., Sahani, D.V., Kalva, S.P., Kozin, S.V., Mino, M., Cohen, K.S., Scadden, D.T.,
Hartford, A.C., Fischman, A.J., Clark, J.W., Ryan, D.P., Zhu, A.X., Blaszkowsky, L.S.,
Chen, H.X., Shellito, P.C., Lauwers, G.Y., Jain, R.K.: Direct evidence that the VEGF-
specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat. Med.
10, 145-147 (2004)
123. Wood, L., Kamm, R., Asada, H.: Stochastic modeling and identification of emergent
behaviors of an Endothelial Cell population in angiogenic pattern formation. Int. J. Robot.
Res. 30, 659-677 (2011)
124. Xue, C., Friedman, A., Sen, C.K.: A mathematical model of ischemic cutaneous wounds.
Proc. Natl. Acad. Sci. USA 106, 16782-16787 (2009)
125. Yancopoulos, G.D., Davis, S., Gale, N.W., Rudge, J.S., Wiegand, S.J., Holash, J.: Vascular-
specific growth factors and blood vessel formation. Nature 407, 242-248 (2000)
126. Yasui, N., Sato, M., Ochi, T., Kimura, T., Kawahata, H., Kitamura, Y., Nomura, S.: Three
modes of ossification during distraction osteogenesis in the rat. J. Bone Joint Surg. Br. 79,
824-830 (1997)
127. Zaman, M.H., Kamm, R.D., Matsudaira, P., Lauffenburger, D.A.: Computational model for
cell migration in three-dimensional matrices. Biophys. J. 89, 1389-1397 (2005)
128. Zelzer, E., McLean, W., Ng, Y.S., Fukai, N., Reginato, A.M., Lovejoy, S., D'Amore, P.A.,
Olsen, B.R.: Skeletal defects in VEGF (120/120) mice reveal multiple roles for VEGF in
skeletogenesis. Development 129, 1893-1904 (2002)
Search WWH ::




Custom Search