Biomedical Engineering Reference
In-Depth Information
70. Lo, C., Wang, H., Dembo, M., Wang, Y.: Cell movement is guided by the rigidity of the
substrate. Biophys. J. 79, 144-152 (2000)
71. Macklin,
P.,
McDougall,
S.R.,
Anderson,
A.R.A.,
Chaplain,
M.A.J.,
Cristini,
V.,
Lowengrub,
J.:
Multiscale
modelling
and
nonlinear
simulation
of
vascular
tumour
growth. J. Math. Biol. 58, 765-798 (2009)
72. Maggelakis, S.: A mathematical model of tissue replacement during epidermal wound
healing. Appl. Math. Model. 27, 189-196 (2003)
73. Mantzaris,
N.,
Webb,
S.,
Othmer,
H.:
Mathematical
modeling
of
tumor-induced
angiogenesis. J. Math. Biol. 49, 111-187 (2004)
74. Marti, H.H.: Angiogenesis-a self-adapting principle in hypoxia. In: Clauss, M., Breier, G.
(eds) Mechanisms of Angiogenesis, pp. 163-180. Birkhauser, Switzerland (2005)
75. McCarthy, J.G., Schreiber, J., Karp, N., Thorne, C.H., Grayson, B.H.: Lengthening the
human mandible by gradual distraction. Plast. Reconstr. Surg. 89, 1-8 (1992)
76. McCarthy, I.: The physiology of bone blood flow: a review. J. Bone Joint Surg. Am. 88, 4-9
(2006)
77. McDougall, S.R., Anderson, A.R.A., Chaplain, M.A.J., Sherratt, J.A.: Mathematical
modelling of flow through vascular networks: implications for tumour-induced angiogenesis
and chemotherapy strategies. Bull. Math. Biol. 64, 673-702 (2002)
78. McDougall, S.R., Anderson, A.R.A., Chaplain, M.A.J.: Mathematical modelling of dynamic
adaptive
tumour-induced
angiogenesis:
clinical
implications
and
therapeutic
targeting
strategies. J. Theor. Biol. 241, 564-589 (2006)
79. Merks, R.M.H., Glazier, J.A.: Dynamic mechanisms of blood vessel growth. Nonlinear 19,
C1-C10 (2006)
80. Merks, R.M.H., Brodsky, S.V., Goligorksy, M.S., Newman, S.A., Glazier, J.A.: Cell
elongation
is key
to in silico
replication of in vitro
vasculogenesis
and subsequent
remodeling. Dev. Biol. 289, 44-54 (2006)
81. Merks, R.M., Perryn, E.D., Shirinifard, A., Glazier, J.A.: Contact-inhibited chemotaxis in de
novo and sprouting blood-vessel growth. PLoS Comput. Biol. 4, e1000163 (2008)
82. Merks, R.M.H., Koolwijk, P.: Modeling Morphogenesis in silico and in vitro: towards
quantitative, predictive, cellbased modeling. Math. Model. Nat. Phenom. 4, 149-171 (2009)
83. Mikos,
A.G.,
Leite,
S.M.,
Vacanti,
J.P.,
Langer,
R.:
Prevascularization
of
porous
biodegradable polymers. Biotechnol. Bioeng. 42, 716-723 (1993)
84. Milde, F., Bergdorf, M., Koumoutsakos, P.: A hybrid model for three-dimensional
simulations of sprouting angiogenesis. Biophys. J. 95, 3146-3160 (2008)
85. Moreo, P., Garca-Aznar, J.M., Doblar, M.: Modeling mechanosensing and its effect on the
migration and proliferation of adherent cells. Acta Biomaterialia 4, 613-621 (2008)
86. Nomi, M., Atala, A., Coppi, P.D., Soker, S.: Principals of neovascularization for tissue
engineering. Mol. Aspects Med. 23, 463-483 (2002)
87. Oberringer, M., Jennevein, M., Matsch, S.E., Pohlemann, T., Seekamp, A.: Different cell
cycle responses of wound healing protagonists to transient in vitro hypoxia. Histochem.
Cell. Biol. 123, 595-603 (2005)
88. Olsen, L., Sherratt, J.A., Maini, P.K., Arnold, F.: A mathematical model for the capillary
endothelial cell-extracellular matrix interactions in wound-healing angiogenesis. IMA J.
Math. Appl. Med. Biol. 14, 261-281 (1997)
89. Orme, M.E., Chaplain, M.A.: A mathematical model of the first steps of tumour-related
angiogenesis: capillary sprout formation and secondary branching. IMA J. Math. Appl.
Med. Biol. 13, 73-98 (1996)
90. Orme, M.E., Chaplain, M.A.: Two-dimensional models of tumour angiogenesis and anti-
angiogenesis strategies. IMA J. Math. Appl. Med. Biol. 14, 189-205 (1997)
91. Owen, M.R., Alarcón, T., Maini, P.K., Byrne, H.M.: Angiogenesis and vascular remodelling
in normal and cancerous tissues. J. Math. Biol. 58, 689-721 (2009)
92. Pacicca, D.M., Patel, N., Lee, C., Salisbury, K., Lehmann, W., Carvalho, R., Gerstenfeld,
L.C., Einhorn, T.A.: Expression of angiogenic factors during distraction osteogenesis.
Bone 33, 889-898 (2003)
Search WWH ::




Custom Search