Biomedical Engineering Reference
In-Depth Information
44. Watton, P.N., Ventikos, Y., Holzapfel, G.A.: Modelling the mechanical response of elastin
for arterial tissue. J. Biomech. 42, 1320-1325 (2009)
45. Humphrey, J.D.: Remodelling of a collagenous tissue at fixed lengths. J. Biomech. Eng.
121, 591-597 (1999)
46. Gruttmann, F., Taylor, R.L.: Theory and finite element formulation of rubberlike membrane
shells using principal stretches. Int. J. Numer. Methods Eng. 35, 1111-1126 (1992)
47. Huang, H.: Haemodynamics in diseased arteries: effects on plaque and aneurysm
progression by advanced imaging and modelling techniques. Ph.D. Thesis, Department of
Engineering Science, University of Oxford, Oxford, UK (2010)
48. Patakar, S.V.: Numerical heat transfer and fluid flow. Hemisphere Publishing Corporation,
Washington - New York - London. McGraw Hill Book Company, New York (1980)
49. Ferziger J.H, Peric M., (2002) Computational methods for fluid dynamics, 3rd edn.
Springer, Heidelberg
50. Hutchinson, B.R, Raithby, G.D.: A multigrid method based on the additive correction
strategy. Numer. Heat Transf. 9, 511-537 (1986)
51. Cebral, J.R., Castro, M.A., Appanaboyina, S., Putman, C.M., Millan, D., Frangi, A.F.:
Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm
hemodynamics: technique and sensitivity. IEEE Trans. Med. Imaging 24, 457-467 (2005)
52. Fisher, C., Rossmann, J.S.: Effect of non-newtonian behavior on hemodynamics of cerebral
aneurysms. ASME J. Biomech. Eng. 131, 091004 (2009)
53. Chatziprodromou, I., Tricoli, A., Poulikakos, D., Ventikos, Y.: Haemodynamics and wall
remodelling of a growing cerebral aneurysm: a computational model. J. Biomech. 40, 412-426
(2007)
54. Oshima, M., Torii, R., Kobayashia, T., Taniguchic, N., Takagid, K.: Finite element simulation
of blood flow in the cerebral artery. Comput. Methods Appl. Mech. Eng. 191, 661-671 (2001)
55. Reymond, P., Merenda, F., Perren, F., Rufenacht, D., Stergiopulos, N.: Validation of a one-
dimensional model of the systemic arterial tree. Am. J. Physiol. Heart Circ. Physiol. 297,
H208-H222 (2009)
56. Villa-Uriol M.C., Berti G., Hose D.R., Marzo A., Chiarini A., Penrose J., Pozo J., Schmidt J.G.,
Singh P., Lycett R., Larrabide I., Frangi A.F.: @neurist complex information processing toolchain
for the integrated management of cerebral aneurysms. Interface Focus 1, 308-319 (2011)
57. Reymond P., Bohraus Y., Perren F., Lazeyras F., Stergiopulos N., (2011) Validation of a
patient-specific one-dimensional model of the systemic arterial tree. Am. J. Physiol. Heart
Circ. Physiol. 301, H1173-H1182
58. Wang, J.H.C, Thampaty, B.P.: An introductory review of cell mechanobiology. Biomech.
Model. Mechanobiol. 5, 1-16 (2006)
59. Chiquet, M., Renedo, A.S., Huber, F., Flück, M.: How do fibroblasts translate mechanical
signals into changes in extracellular matrix production?. Matrix Biology 22, 73-80 (2003)
60. Sotoudeh, M., Jalali, S., Usami, S., Shyy, J.Y., Chien, S.: A strain device imposing dynamic
and uniform equi-biaxial strain to cultured cells. Ann. Biomed. Eng. 26, 181-189 (1998)
61. Shin, H.Y., Gerritsen, M.E., Bizios, R.: Regulation of endothelial cell proliferation and
apoptosis by cyclic pressure. Ann. Biomed. Eng. 30, 297-304 (2002)
62. Länne, T., Sonesson, B., Bergqvist, D., Bengtsson, H., Gustafsson, D.: Diameter and
compliance in the male human abdominal aorta: influence of age and aortic aneurysm.
Eur. J. Vasc. Surg. 6, 178-184 (1992)
63. Cummins, P.M., von Offenberg Sweeney, N., Killeen, M.T., Birney, Y.A., Redmond, E.M.,
Cahill, P.A.: Cyclic strain-mediated matrix metalloproteinase regulation within the vascular
endothelium: a force to be reckoned with. Am. J. Physiol. Heart Circ. Physiol. 292, H28-H42
(2007)
64. Hsiai, T.K.: Mechanical transduction coupling between endothelial and smooth muscle
cells: role of hemodynamic forces. Am. J. Physiol. Cell Physiol. 294, C695-C661 (2008)
65. Zeinali-Davarani, S., Raguin, L.G., Baek, S.: An inverse optimization approach toward
testing
different
hypotheses
of
vascular
homeostasis
using
image-based
models.
Int.
J. Struct. Changes Solids Mech. Appl. 3, 33-34 (2011)
Search WWH ::




Custom Search