Biomedical Engineering Reference
In-Depth Information
Shipley, R.J., Davidson, A.J., Chan, K., Chaudhuri, J.B., Waters, S.L., Ellis, M.J.: A strategy to
determine operating parameters in tissue engineering hollow fiber bioreactors. Biotech.
Bioeng. 108, 1450-1461 (2011)
Sipe, J.D.: Tissue engineering and reparative med. Ann. N. Y. Acad. Sci. 961, 1-9 (2002)
Trelstad, R.L., Silver, F.H.H.: Matrix assembly. In: Hay, E.D. (ed.) Cell biology of the
extracellular matrix (1981)
Treusdell, C., Noll, W.: The nonlinear field theory of mechanics. In: Flugge S. (ed.) Handbuch
der physik. (1960)
Turner, S., Sherratt, J.A., Painter, K.J., Savill, N.J.: From a discrete to a continuous model of
biological cell movement. Phys. Rev. E 69(2), 021910 (2004)
Urban, J.P.G.: The chondrocyte: a cell under pressure. Rheumatology 33(10), 901-908 (1994)
Van Leeuwen, I.M.M., Mirams, G.R., Walter, A., Fletcher, A., Murray, P., Osbourne, J., Varma,
S., Young, S.J., Cooper, J., Doyle, B. et al.: An integrative computational model for intestinal
tissue renewal. Cell Prolif. 42(5), 617-636 (2009)
Waters, S.L., Cummings, L.J.: Coriolis effects in a rotating hele-shaw cell. Phys. Fluids 18,
048101 (2005)
Waters, S.L., Cummings, L.J., Shakesheff, K.M., Rose, F.R.A.J.: Tissue growth in a rotating
bioreactor. part i: mechanical stability. Math. Med. Biol. 23, 311-337 (2006)
Weiss P., (1945) Experiments on cell and axon orientation in vitro: the role of colloidal exudates
in tissue organization. J. Exp. Zool. 100(3), 353-386. ISSN:1097-010X
Whitaker, S.: The transport equations for multi-phase systems. Chem. Eng. Sci. 28, 139-147
(2000)
Whittaker, R.J., Booth, R., Dyson, R., Bailey, C., Parsons Chini, L., Naire, S., Payvandi, S.,
Rong, Z., Woollard, H., Cummings, L.J., Waters, S.L., Mawasse, L., Chaudhuri, J.B., Ellis,
M.J., Michael, V., Kuiper, N.J., Cartmell, S.: Mathematical modelling of fibre-enhanced
perfusion inside a tissue engineering bioreactor. J. Theor. Biol. 256, 533-546 (2009)
Wilkinson, D.J.: Stochastic modelling for quantitative description of heterogeneous biological
systems. Na. Genet. 10(2), 122-133 (2009)
Wilson, D.J., King, J.R., Byrne, H.M.: Modelling scaffold occupation by a growing nutrient-rich
tissue. Math. Models Meth. App. Sci. 17, 1721-1750 (2007)
Yano, S., Komine, M., Fujimoto, M., Okochi, H., Tamaki, K.: Mechanical stretching in vitro
regulates
signal
transduction
pathways
and
cellular
proliferation
in
human
epidermal
keratinocytes. J. Invest. Dermatol. 122(3), 783-790 (2004)
You, J., Yellowley, C.E., Donahue, H.J., Zhang, Y., Chen, Q., Jacobs, C.R.: Substrate
deformation levels associated with routine physical activity are less stimulatory to bone cells
relative to loading-induced oscillatory fluid flow. J. Biomech. Eng. 122, 377-393 (2000)
Yourek, G., Al-Hadlaq, A., Patel, R., McCormick, S., Reilly, G.C., Mao, J.J.: Nanophysical
properties of living cells. In: Stroscio Michael, A., Mitra, D., Bin, H. (eds.) Biological
Nanostructures and Applications of Nanostructures in Biology Bioelectric Engineering.
Springer, New York (2004)
Yu, X., Botchwey, E.A., Levine, E.M., Pollack, S.R., Laurencin, C.T.: Bioreactor-based bone
tissue engineering: the influence of dynamic flow on osteoblast phenotypic expression and
matrix mineralization. PNAS 101(31), 11203 (2004)
Zdrahala, R.J., Zdrahala, I.J.: In vivo tissue engineering: part I. Concept genesis and guidelines
for its realization. J. Biomat. Appl. 14(2), 192 (1999). ISSN:0885-3282
Search WWH ::




Custom Search