Biomedical Engineering Reference
In-Depth Information
87. Song, L., Webb, N.E., Song, Y., Tuan, R.S.: Identification and functional analysis of
candidate genes regulating mesenchymal stem cell self-renewal and multipotency. Stem
Cells 24(7), 1707-1718 (2006)
88. Sorrentino, A., Ferracin, M., Castelli, G., Biffoni, M., Tomaselli, G., Baiocchi, M., Fatica,
A., Negrini, M., Peschle, C., Valtieri, M.: Isolation and characterization of
CD146+ multipotent mesenchymal stromal cells. Exp. Hematol. 36(8), 1035-1046 (2008)
89. Stolzing,
A.,
Coleman,
N.,
Scutt,
A.:
Glucose-induced
replicative
senescence
in
mesenchymal stem cells. Rejuvenation Res. 9(1), 31-35 (2006)
90. Stolzing, A., Jones, E., McGonagle, D., Scutt, A.: Age-related changes in human bone
marrow-derived mesenchymal stem cells: consequences for cell therapies. Mech. Ageing
Dev. 129(3), 163-173 (2008)
91. Stolzing, A., Scutt, A.: Age-related impairment of mesenchymal progenitor cell function.
Aging Cell 5, 213-224 (2006)
92. Suva, D., Garavaglia, G., Menetrey, J., Chapuis, B., Hoffmeyer, P., Bernheim, L., Kindler, V.:
Non-hematopoietic human bone marrow contains long-lasting, pluripotential mesenchymal
stem cells. J. Cell Physiol. 198(1), 110-118 (2004)
93. Tuli, R., Tuli, S., Nandi, S., Huang, X., Manner, P.A., Hozack, W.J., Danielson, K.G.,
Hall, D.J., Tuan, R.S.: Transforming growth factor-beta-mediated chondrogenesis of human
mesenchymal progenitor cells involves N-cadherin and mitogen-activated protein kinase
and Wnt signaling cross-talk. J. Biol. Chem. 278(42), 41227-41236 (2003)
94. Wagner, W., Bork, S., Horn, P., Krunic, D., Walenda, T., Diehlmann, A., Benes, V., Blake,
J., Huber, F.-X., Eckstein, V., Boukamp, P., Ho, A.D.: Aging and replicative senescence
have related effects on human stem and progenitor cells. PLoS One 4(6), e5846 (2009)
95. Wagner, W., Horn, P., Castoldi, M., Diehlmann, A., Bork, S., Saffrich, R., Benes, V., Blake,
J., Pfister, S., Eckstein, V., Ho, A.D.: Replicative senescence of mesenchymal stem cells: a
continuous and organized process. PLoS One 3(5), e2213 (2008)
96. Xu, B.L., Tao, Y.: External noise and feedback regulation: steady-state statistics of auto-
regulatory genetic network. J. Theor. Biol. 243(2), 214-221 (2006)
97. Xu, Y., Malladi, P., Chiou, M., Bekerman, E., Giaccia, A.J., Longaker, M.T.: In vitro
expansion of adipose-derived adult stromal cells in hypoxia enhances early chondrogenesis.
Tissue Eng. 13(12), 2981-2993 (2007)
98. Yan, X., Qin, H., Qu, C., Tuan, R.S., Shi, S., Huang, G.T.: iPS cells reprogrammed from
human mesenchymal-like stem/progenitor cells of dental tissue origin. Stem Cells Dev.
19(4), 469-480 (2010)
99. Yoshimura, H., Muneta, T., Nimura, A., Yokoyama, A., Koga, H., Sekiya, I.: Comparison of
rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose
tissue, and muscle. Cell Tissue Res. 327(3), 449-462 (2007)
100. Zipori, D.: The stem state: mesenchymal plasticity as a paradigm. Curr. Stem Cell Res.
Ther. 1(1), 95-102 (2006)
101. Zscharnack, M., Poesel, C., Galle, J., Bader, A.: Low Oxygen Expansion Improves
Subsequent Chondrogenesis of Ovine Bone-Marrow-Derived Mesenchymal Stem Cells in
Collagen Type I Hydrogel. Cells Tissues Organs 190(2), 81-93 (2009)
102. Zuk, P.A., Zhu, M., Ashjian, P., De Ugarte, D.A., Huang, J.I., Mizuno, H., Alfonso, Z.C.,
Fraser, J.K., Benhaim, P., Hedrick, M.H.: Human adipose tissue is a source of multipotent
stem cells. Mol. Biol. Cell 13(12), 4279-4295 (2002)
Search WWH ::




Custom Search