Biomedical Engineering Reference
In-Depth Information
36. Galban, C.J., Locke, B.R.: Analysis of cell growth kinetics and substrate diffusion in a
polymer scaffold. Biotechnol. Bioeng. 65(2), 121-132 (1999)
37. Garzon-Alvarado, D.A., Garcia-Aznar, J.M., Doblare, M.: A reaction-diffusion model for
long bones growth. Biomech. Model. Mechan. 8(5), 381-395 (2009). doi: 10.1007/s10237-
008-0144-z
38. Gefen, A., Cornelissen, L.H., Gawlitta, D., Bader, D.L., Oomens, C.W.: The free diffusion
of macromolecules in tissue-engineered skeletal muscle subjected to large compression
strains. J. Biomech. 41(4), 845-853 (2008). doi: 10.1016/j.jbiomech.2007.10.023 . S0021-
9290(07)00471-X[pii]
39. Gerber, H.P., Vu, T.H., Ryan, A.M., Kowalski, J., Werb, Z., Ferrara, N.: VEGF couples
hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone
formation. Nat. Med. 5(6), 623-628 (1999)
40. Geris, L., Gerisch, A., Maes, C., Carmeliet, G., Weiner, R., Vander Sloten, J., Van
Oosterwyck, H.: Mathematical modeling of fracture healing in mice: comparison between
experimental data and numerical simulation results. Med. Biol. Eng. Comput. 44(4),
280-289 (2006). doi: 10.1007/s11517-006-0040-6
41. Geris, L., Schugart, R., Van Oosterwyck, H.: In silico design of treatment strategies in
wound healing and bone fracture healing. Philos. Trans. A Math. Phys. Eng. Sci. 368(1920),
2683-2706 (2010). doi: 10.1098/rsta.2010.0056 . 368/1920/2683[pii]
42. Griffith, L.G., Swartz, M.A.: Capturing complex 3D tissue physiology in vitro. Nat. Rev.
Mol. Cell Biol. 7(3), 211-224 (2006). doi: 10.1038/Nrm1858
43. Grimshaw, M.J., Mason, R.M.: Bovine articular chondrocyte function in vitro depends upon
oxygen tension. Osteoarthr. Cartil. 8(5), 386-392 (2000). doi: 10.1053/joca.1999.0314 .
S1063-4584(99)90314-X[pii]
44. Gross, J.D., Constantinidis, I., Sambanis, A.: Modeling of encapsulated cell systems. J. Theor.
Biol. 244(3), 500-510 (2007). doi: 10.1016/j.jtbi.2006.08.012 . S0022-5193(06)00365-1[pii]
45. Guaccio, A., Borselli, C., Oliviero, O., Netti, P.A.: Oxygen consumption of chondrocytes in
agarose and collagen gels: a comparative analysis. Biomaterials 29(10), 1484-1493 (2008).
doi: 10.1016/j.biomaterials.2007.12.020
46. Gurdon,
J.B.,
Bourillot,
P.Y.:
Morphogen
gradient
interpretation.
Nature
413(6858),
797-803 (2001)
47. Gurskaya, N.G., Verkhusha, V.V., Shcheglov, A.S., Staroverov, D.B., Chepurnykh, T.V.,
Fradkov, A.F., Lukyanov, S., Lukyanov, K.A.: Engineering of a monomeric green-to-red
photoactivatable fluorescent protein induced by blue light. Nat. Biotechnol. 24(4), 461-465
(2006). doi: 10.1038/Nbt1191
48. Hacker, U., Nybakken, K., Perrimon, N.: Heparan sulphate proteoglycans: the sweet side of
development. Nat. Rev. Mol. Cell Biol. 6(7), 530-541 (2005). 10.1038/nrm1681]nrm1681[pii]
49. Happel, J.: Viscous flow relative to arrays of cylinders. AIChE J. 5(2), 174-177 (1959)
50. Helm, C.L.E., Fleury, M.E., Zisch, A.H., Boschetti, F., Swartz, M.A.: Synergy between
interstitial flow and VEGF directs capillary morphogenesis in vitro through a gradient
amplification mechanism. Proc. Natl. Acad. Sci. U. S. A. 102(44), 15779-15784 (2005).
doi: 10.1073/pnas.0503681102
51. Heywood, H.K., Bader, D.L., Lee, D.A.: Rate of oxygen consumption by isolated articular
chondrocytes is sensitive to medium glucose concentration. J. Cell. Physiol. 206(2),
402-410 (2006). doi: 10.1002/Jcp.20491
52. Heywood, H.K., Knight, M.M., Lee, D.A.: Both superficial and deep zone articular
chondrocyte subpopulations exhibit the crabtree effect but have different basal oxygen
consumption rates. J. Cell. Physiol. 223(3), 630-639 (2010). doi: 10.1002/Jcp.22061
53. Higdon, J.J.L., Ford, G.D.: Permeability of three-dimensional models of fibrous porous
media. J. Fluid Mech. 308, 341-361 (1996)
54. Hilton, M.J., Gutierrez, L., Martinez, D.A., Wells, D.E.: EXT1 regulates chondrocyte
proliferation
and
differentiation
during
endochondral
bone
development.
Bone
36(3),
379-386 (2005). doi: 10.1016/j.bone.2004.09.025
Search WWH ::




Custom Search