Biomedical Engineering Reference
In-Depth Information
65. Turkevich, J.; Stevenson, P. C.; Hillier, J. A Study of the Nucleation and Growth Processes in
the Synthesis of Colloidal Gold. Discuss. Faraday Soc. 1951, 11, 55-75.
66. Chaudhuri, B.; Raychaudhuri, S. Manufacturing high quality gold sol. 2001 [Feb. 1 2012].
67. Jain, P. K.; Huang, X.; El-Sayed, I. H.; El-sayed, M. A. Review of Some Interesting Surface
Plasmon Resonance-enhanced Properties of Noble Metal Nanoparticles and their Applications
to Biosystems. Plasmonics 2007, 2 .
68. Sperling, R. A.; Gil, P. R.; Zhang, F.; Zanella, M.; Parak, W. J. Biological Applications of Gold
Nanoparticles. Chem. Soc. Rev. 2007, 37 .
69. Ojea-Jimenez, I.; Puntes, V. Instability of Cationic Gold Nanoparticle Bioconjugates: The
Role of Citrate Ions. J. Am. Chem. Soc. 2009, 131, 13320-13327.
70. Katz, E.; Willner, I. Integrated Nanoparticle-Biomolecule Hybrid Systems: Synthesis, Proper-
ties, and Applications. Angew. Chem. Int. Ed. 2004, 43 , 6042-6018.
71. Handley, D. A. Methods for Synthesis of Colloidal Gold. In Colloidal Gold: Principles, Meth-
ods, and Applications ; Hayat, M. A., Ed.; Academic Press: New York, 1989.
72. Frens, G. Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold
Suspensions. Nat. Phys. Sci. 1973, 241, 20-22.
73. Slot, J.; Geuze, H. Cryosectioning and Immunolabeling. Nat. Protoc. 2007, 2, 2480-2491.
74. Zhang, Z.; Ross, R.; Roeder, R. Preparation of Functionalized Gold Nanoparticles as a Tar-
geted X-ray Contrast Agent for Damaged Bone Tissue. Nanoscale 2010, 2, 582-586.
75. Shalkevich, N.; Escher, W.; Burgi, T.; Michel, B.; Si-Ahmed, L.; Poulikakos, D. On the Ther-
mal Conductivity of Gold Nanoparticle Colloids. Langmuir 2010 .
76. Aqil, A.; Qiu, H.; Greish, J.; Jerome, R.; De Pauw, E.; Jerome, C. Coating of Gold Nanoparti-
cles by Thermosensitive Poly ( N -isopropylacrylamide) End-capped by Biotin. Polymer 2008,
49, 1145-1153.
77. Sweeney, S.; Wpehrle, G.; Hutchison, J. Rapid Purification and Size Separation of Gold
Nanoparticles via Diafiltration. J. Am. Chem. Soc. 2006, 128, 3190-3197.
78. McFarland, A. D.; Haynes, C. L.; Mirkin, C. A.; Van Duyne, R. P.; Godwin, H. A. Color My
Nanoworld. J. Chem. Educ. 2004, 81, 544A.
79. Basu, S.; Pande, S.; Jana, S.; Bolisetty, S.; Pal, T. Controlled Interparticle Spacing for Surface-
Modified Gold Nanoparticle Aggregates. Langmuir 2008, 24, 5562-5568.
80. Huang, C. C.; Chiang, C. K.; Lin, Z. H.; Lee, K. H.; Chang, H. T. Bioconjugated Gold
Nanodots and Nanoparticles for Protein Assays Based on Photoluminescence Quenching.
Anal. Chem. 2008, 80, 1497-1504.
81. Balasubramanian, S. K.; Yang, L.; Yung, L. -Y. L.; Ong, C. -N.; Ong, W. -Y.; Yu, L. E. Charac-
terization, Purification, and Stability of Gold Nanoparticles. Biomaterials 2010, 31, 9023-9030.
82. Hazarika, P.; Giorgi, T.; Reibner, M.; Ceyhan, B.; Neimeyer, C. Synthesis and Characteriza-
tion of Deoxyribonucleic Acid-Conjugated Gold Nanoparticles. In Bioconjugation Protocols:
Strategies and Methods ; Niemeyer, C., Ed.; Humana Press: New Jersey, 2004.
83. Demers, L.; Mirkin, C.; Mucic, R.; Reynolds, R.; Letsinger, R.; Elghanian, R.; Viswanadham,
G. A Fluorescence-based Method for Determining the Surface Coverage and Hybridization
Efficiency of Thiol-capped Oligonucleotides Bound to Gold Thin Films and Nanoparticles.
Anal. Chem. 2000, 72, 5535-5541.
84. Qu, F.; Xu, H.; Aguilar, Z. P.; Xu, H.; Wang, Y. A.; Wei, H. Role of Reactive Oxygen Species in
the Antibacterial Mechanism of Silver Nanoparticles on Escherichia coli O157:H7. Biometals
2012, 25, 45-53.
85. Zhu, J. J.; Liao, X. H.; Zhao, X. N.; Hen, H. Y. Mater. Lett. 2001, 48, 91-95.
86. Chou, W. L.; Yu, D. G. Polym. Adv. Technol. 2005, 16, 600-608.
Search WWH ::




Custom Search