Biomedical Engineering Reference
In-Depth Information
24. Murray, C.; Norris, D.; Bawendi, M. Synthesis and Characterization of Nearly Monodisperse
CdE (E = sulfur, selenium, tellurium) Semiconductor Nanocrystallites. J. Am. Chem. Soc.
1993, 115, 8706-8715.
25. Su, H.; Xu, H.; Gao, S.; Dixon, J.; Aguilar, Z. P.; Wang, A.; Xu, J.; Wang, J. Microwave
Synthesis of Nearly Monodisperse Core/Multishell Quantum Dots with Cell Imaging Applica-
tions. Nanoscale Res. Lett. 2010, 5, 625-630.
26. Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H. Quantum Dot Bioconjugates for
Imaging, Labeling and Sensing. Nat. Mater. 2005, 4, 435-446.
27. Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J., et al. Quantum
Dots for Live Cells, in vivo Imaging, and Diagnostics. Science 2005, 307, 538-544.
28. Somers, R.; Bawendi, M.; Nocera, D. CdSe Nanocrystal Based Chem-/Bio- Sensors. Chem.
Soc. Rev. 2007, 36, 579-591.
29. Alivisatos, A. P.; Gu, W.; Larabell, C. Quantum Dots as Cellular Probes. Annu. Rev. Biomed.
Eng. 2005, 7, 55-76.
30. Jamieson, T.; Bakhshi, R.; Petrova, D.; Pocock, R.; Seifalian, A. M. Biological Applications
of Quantum Dots. Biomaterials 2007, 28, 4717-4732.
31. Iyer, G.; Weiss, S.; Pinaud, F.; Tsay, J. M. Solubilization of Quantum Dots with a Recombi-
nant Peptide from Escherichia coli . Small 2007, 3, 793-798.
32. Liu, W.; Howarth, M.; Greytak, A. B.; Zheng, Y.; Nocera, D. G.; Ting, A. Y., et al. Compact
Biocompatible Quantum Dots Functionalized for Cellular Imaging. J. Am. Chem. Soc. 2008,
130, 1274-1284.
33. Susumu, K.; Uyeda, H.; Medintz, I.; Pons, T.; Delehanty, J.; Mattoussi, H. Enhancing the Sta-
bility and Biological Functionalities of Quantum Dots via Compact Multifunctional Ligands.
J. Am. Chem. Soc. 2007, 129, 13987-13996.
34. Chen, Y.; Thakar, R.; Snee, P. T. Imparting Nanoparticle Function with Size-controlled
Amphiphilic Polymers. J. Am. Chem. Soc. 2008, 130, 3744-3745.
35. Carion, O.; Mahler, B.; Pons, T.; Dubertret, B. Synthesis, Encapsulation, Purification and
Coupling of Single Quantum Dots in Phospholipid Micelles for their Use in Cellular and in
vivo Imaging. Nat. Protoc. 2007, 2, 2383-2390.
36. Pinaud, F.; King, D.; Moore, H. P.; Weiss, S. Bioactivation and Cell Targeting of Semiconduc-
tor CdSe/Zns Nanocrystals with Phytochelatin-Related Peptides. J. Am. Chem. Soc. 2004,
126, 6115-6123.
37. Aguilar, Z.; Xu, H.; Jones, B.; Dixon, J.; Wang, A. Semiconductor Quantum Dots for Cell
Imaging. Mater. Res. Soc. Proc. 2010, 1237 , 1237-TT1206-1201.
38. Xu, H.; Aguilar, Z.; Dixon, J.; Jones, B.; Wang, A.; Wei, H. Breast Cancer Cell Imaging Using
Semiconductor Quantum Dots. Electrochem. Soc. Trans. 2009, 25, 69-77.
39. Xu, H.; Aguilar, Z.; Waldron, J.; Wei, H.; Wang, Y. Application of Semiconductor Quantum
Dots for Breast Cancer Cell Sensing, 2009 Biomedical Engineering and Informatics. IEEE
Computer Society BMEI 2009, 1, 516-520.
40. Xu, H.; Aguilar, Z.; Wang, A. Quantum Dot-based Sensors for Proteins. Electrochem. Soc.
Trans. 2010, 25, 1-10.
41. Xu, H.; Aguilar, Z.; Wei, H.; Wang, A. Development of Semiconductor Nanomaterial
Whole Cell Imaging Sensor on Silanized Microscope Slides. Front. Biosci. 2011, E3,
1013-1024.
42. Rzigalinski, B. A.; Strobl, J. S. Cadmium-containing Nanoparticles: Perspectives on Pharma-
cology and Toxicology of Quantum Dots in New Insights into the Mechanisms of Cadmium
Toxicity—Advances in Cadmium Research. Toxicol. Appl. Pharmacol. 2009, 238, 280-288.
Search WWH ::




Custom Search