Biomedical Engineering Reference
In-Depth Information
75. Khawaja, A. M. Review: The Legacy of Nanotechnology: Revolution and Prospects in Neuro-
surgery. Int. J. Surg. 2011, 9, 608-614.
76. Peek, L. J.; Middaugh, C. R.; Berkland, C. Nanotechnology in Vaccine Delivery. Adv. Drug.
Deliv. Rev. 2008, 60, 915-928.
77. Surendiran, A.; Sandhiya, S.; Pradhan, S. C.; Adithan, C. Novel Applications of Nanotechnol-
ogy in Medicine. Indian J. Med. Res. 2009, 130, 689-701.
78. Tekade, R.; Kumar, P.; Jain, N. Dendrimers in Oncology: An Expanding Horizon. Chem. Rev.
2009, 109, 49-87.
79. van Nostrum, C. Polymeric Micelles to Deliver Photosensitizers for Photodynamic Therapy.
Adv. Drug Deliv. Rev. 2004, 56, 9-12.
80. Wang, S.; Cai, L. Polymers for Fabricating nerve Conduits . 2010, June 16 2012 [cited 2010].
81. de Jong, S.; Chikh, G.; Sekirov, L.; Raney, S.; Semple, S.; Klimuk, S., et al. Encapsulation in
Liposomal Nanoparticles Enhances the Immunostimulatory, Adjuvant and Anti-Tumor Activ-
ity of Subcutaneously Administered CpG ODN. Cancer Immunol. Immunother. 2007, 56,
1251-1264.
82. Goyal, A. K.; Khatri, K.; Mishra, N.; Mehta, A.; Vaidya, B.; Tiwari, S., et al. Aquasomes-a
Nanoparticulate Approach for the Delivery of Antigen. Drug. Dev. Ind. Pharm. 2008, 34,
1297-1305.
83. Klippstein, R.; Pozo, D. Nanotechnology-based Manipulation of Dendritic Cells for Enhanced
Immunotherapy Strategies. Nanomedicine 2010, 6, 523-529.
84. Kortylewski, M.; Swiderski, P.; Herrmann, A.; Wang, L.; Kowolik, C.; Kujawski, M., et al. In
Vivo Delivery of siRNA to Immune cells by Conjugation to a TLR9 Agonist Enhances Anti-
tumor Immune Responses. Nat. Biotechnol. 2009, 27, 925-932.
85. O'Hagan, D. T.; Singh, M. Microparticles as Vaccine Adjuvants and Delivery Systems. Expert
Rev. Vaccines 2003, 2, 269-283.
86. Pandey, R. S.; Sahu, S.; Sudheesh, M. S.; Madan, J.; Kumar, M.; Dixit, V. K. Carbohydrate
Modified Ultrafine Ceramic Nanoparticles for Allergen Immunotherapy. Int. Immunopharma-
col. 2011, 11, 925-931.
87. Van Der Lubben, IM.; Konings, F. A.; Borchard, G.; Verhoef, J. C.; Junginger-He, C. In Vivo
Uptake of Chitosan Microparticles by Murine Peyer's Patches: Visualization Studies using Con-
focal Laser Scanning Microscopy and Immunohistochemistry. J. Drug Target. 2001, 9, 39-47.
88. Aguilar, Z.; Aguilar, Y.; Xu, H.; Jones, B.; Dixon, J.; Xu, H.; Wang, A. Nanomaterials in Medi-
cine. Electrochem. Soc. Trans. 2010, 33, 69-74.
89. Akagi, T.; Wang, X.; Uto, T.; Baba, M.; Akashi, M. Protein Direct Delivery to Dendritic Cells
using Nanoparticles Based on Amphiphilic Poly(amino acid) Derivatives. Biomaterials 2007,
28, 3427-3436.
90. Calvo, P.; Remuñan-López, C.; Vila-Jato, J. L.; Alonso, M. J. Chitosan and Chitosan/Ethylene
Oxide-propylene Oxide Block Copolymer Nanoparticles as Novel Carriers for Proteins and
Vaccines. Pharm. Res. 1997, 14, 1431-1436.
91. Chertok, B.; Moffat, B. A.; David, A. E.; Yu, F.; Bergemann, C.; Ross, B. D.; Yang, V. C. Iron
Oxide Nanoparticles as a Drug Delivery Vehicle for MRI Monitored Magnetic Targeting of
Brain Tumors. Biomaterials 2008, 29, 486-496.
92. Cho, H. S.; Dong, Z.; Pauletti, G. M., et al. Fluorescent, Superparamagnetic Nanospheres
for Drug Storage, Targeting, and Imaging: A Multifunctional Nanocarrier System for Cancer
Diagnosis and Treatment. ACS Nano. 2010, 4, 5398-5404.
93. Fang, T.; Sawa, X.; Maeda, H., Eds.; Factors and Mechanism of “EPR” Effect and the Enhanced
Antitumor Effects of Macromolecular Drugs Including SMANCS topic Series Advances in
Experimental Medicine and Biology ; SpringerLink Netherlands: Dordrecht, Netherlands, 2004.
Search WWH ::




Custom Search