Biomedical Engineering Reference
In-Depth Information
20. Xu, H.; Aguilar, Z.; Waldron, J.; Wei, H.; Wang, Y. Application of Semiconductor Quantum
Dots for Breast Cancer Cell Sensing, 2009 Biomedical Engineering and Informatics. IEEE
Comput. Soc. BMEI 2009, 1, 516-520.
21. Xu, H.; Aguilar, Z.; Wang, A. Quantum Dot-Based Sensors for Proteins. ECS Trans. 2010, 25,
1-10.
22. Armentano, I.; Alvarez-Pérez, M. A.; Carmona-Rodríguez, B.; Gutiérrez-Ospina, I.; Kenny,
J. M.; Arzate, H. Analysis of the Biomineralization Process on SWNTCOOH and F-SWNT
Films. Mater. Sci. Eng. C 2008, 28, 1522-1529.
23. Bakry, R.; Vallant, R. M.; Najam-ul-hag, M.; Rainer, M.; Szabo, Z.; Huck, C. W.; Bonn, G. K.
Medicinal Applications of Fullerenes. Int. J. Nanomedicine 2007, 2, 639-649.
24. Belyanskaya, L.; Weigel, S.; Hirsch, C.; Tobler, U.; Krug, H. F.; Wick, P. Effects of Carbon
Nanotubes on Primary Neurons and Glial Cells. Neurotoxicology 2009, 30, 702-711.
25. Chan, W. C. W. In Bio-Applications of Nanoparticles ; Springer Science + Business Media:
New York, 2007.
26. Correa-Duarte, M. A.; Wagner, N.; Rojas-Chapana, J.; Morsczeck, C.; Thie, M.; Giersig, M.
Fabrication and Biocompatibility of Carbon Nanotube-Based 3D Networks as Scaffolds for
Cell Seeding and Growth. Nano Lett. 2004, 4, 2233-2236.
27. Dai, H.; Shim, M.; Chen, R. J.; Li, Y.; Kam, N. W. S. Functionalization of Carbon Nanotubes
for Biocompatibility and Biomolecular Recognition. Nano Lett. 2002, 2, 285-288.
28. Dumortier, H.; Lacotte, S.; Pastorin, G.; Marega, R.; Wu, W.; Bonifazi, D., et al. Functional-
ized Carbon Nanotubes are Non-Cytotoxic and Preserve the Functionality of Primary Immune
Cells. Nano Lett. 2006, 6, 1522-1528.
29. Gao, X. P.; Qin, X.; Wu, F.; Liu, H.; Lan, Y.; Fan, S. S.; Yuan, H. T.; Song, D. Y.; Shen, P. W.
Synthesis of Carbon Nanotubes by Catalytic Decomposition of Methane using LaNi 5 Hydro-
gen Storage Alloy as Catalyst. Chem. Phys. Lett. 2000, 327, 271-276.
30. Guldi, D. M.; Prato, M. Excited-state Properties of C(60) Fullerene Derivatives. Acc. Chem.
Res. 2000, 33, 695-703.
31. Hirano, S.; Kanno, S.; Furuyama, A. Multi-walled Carbon Nanotubes Injure the Plasma Mem-
brane of Macrophages. Toxicol. Appl. Pharmacol. 2008, 232, 244-251.
32. Iijima, S.; Brabec, C.; Maiti, A.; Bernholc, J. Structural Flexibility of Carbon nanotubes.
J. Chem. Phys. 1996, 104, 2089-2092.
33. Kolosnjaj, J.; Szwarc, H.; Mousa, F. Toxicity Studies of Carbon Nanotubes. Adv. Exp. Med.
Biol. 2007, 620, 181-204.
34. Koruga, D.; Matija, L.; Misic, N.; Rakin, P. Fullerene C60: Properties and Possible Applica-
tions. Trans. Tech. Publ. Mat. Sci. Forum 1996, 214, 49-56.
35. Mamedov, A. A.; Kotov, N. A.; Prato, M.; Guldi, D. M.; Wicksted, J. P.; Hirsch, A. Molecular
Design of Strong Single-Wall Carbon Nanotube/Polyelectrolyte Multilayer Composites. Nat.
Mater. 2002, 1, 190-194.
36. Mattson, M. P.; Haddon, R. C.; Rao, A. M. Molecular Functionalization of Carbon Nanotubes
and use as Substrates for Neuronal Growth. J. Mol. Neurosci. 2000, 14, 175-182.
37. Mwenifumbo, S.; Shaffer, M. S.; Stevens, M. M. Exploring Cellular Behaviour with Multi-
Walled Carbon Nanotube Constructs. J. Mater. Chem. 2007, 17, 1894-1902.
38. Nasibulin, A. G.; Moisala, A.; Jiang, H.; Kauppinen, E. I. Carbon Nanotube Synthesis By a
Novel Aerosol Method. J. Nanopart. Res. 2006, 8, 465-475.
39. Sun, L. F.; Liu, Z. Q.; Ma, X. C.; Zhong, Z. Y.; Tang, S. B.; Xiong, ZT., et al. Growth of Car-
bon Nanotube Arrays using the Existing Array as a Substrate and their Raman Characteriza-
tion. Chem. Phys. Lett. 2001, 340, 222-226.
Search WWH ::




Custom Search