Biomedical Engineering Reference
In-Depth Information
49. Lee, J. K.; Kim, D. B.; Kim, J. I.; Kim, P. Y. In vitro Cytotoxicity Tests on Cultured Human
Skin Fibroblasts to Predict Skin Irritation Potential of Surfactants. Toxicol. In Vitro 2000, 14,
345-349.
50. Allen, D. A.; Riviere, J. E.; Monteiro-Riviere, N. A. Identification of Early Biomarkers of
Inflammation Produced by Keratinocytes Exposed to Jet Fuels. J. Biochem. Mol. Toxicol.
2000, 14, 231-237.
51. Monteiro-Riviere, N. A.; Inman, A. O. Challenges for Assessing Carbon Nanomaterial Toxic-
ity to the Skin. Carbon 2006, 44, 1070-1078.
52. Monteiro-Riviere, N. A.; Inman, A. O.; Zhang, L. W. Limitations and Relative Utility of
Screening Assays to Assess Engineered Nanoparticle Toxicity in a Human Cell Line. Toxicol.
Appl. Pharmacol. 2009, 234, 222-235.
53. Katz, J.; Nanotechnology Boom Expected by 2015: New report forecasts major growth spurt
in next seven years. July 22, 2008. Available from: www.industryweek.com
54. Sun, L. F.; Liu, Z. Q.; Katz, J.; Ma, X. C.; Zhong, Z. Y.; Tang, S. B.; Xiong, Z. T., et al. Growth
of Carbon Nanotube Arrays Using the Existing Array as a Substrate and their Raman Charac-
terization. Chem. Phys. Lett. 2001, 340, 222-226.
55. Castranova, V. Overview of Current Toxicological Knowledge of Engineered Nanoparticles.
J. Occup. Environ. Med. 2011, 53, S14-S17.
56. Schrand, A. M.; Rahman, M. F.; Hussain, S. M.; Schlager, J. J.; Smith, D. A.; Syed, A. F.
Metal-based Nanoparticles and Their Toxicity Assessment. Wiley Interdiscip. Rev. Nanomed.
Nanobiotechnol. 2010, 2, 544-568.
57. Guldi, D. M.; Prato, M. Excited-state Properties of C(60) Fullerene Derivatives. Acc. Chem.
Res. 2000, 33, 695-703.
58. Jin, C. H.; Wang, J. Y.; Chen, Q.; Peng, L. M. In Situ Fabrication and Graphitization of Amorphous
Carbon Nanowires and Their Electrical Properties. J. Phys. Chem. B 2006, 110, 5423-5428.
59. Treacy, M. M. J.; Ebbesen, T. W.; Gibson, J. M. Exceptionally High Young's Modulus
Observed for Individual Carbon Nanotubes. Nature 1996, 381, 678-680.
60. Lee, C. J.; Park, J.; Kang, S. Y.; Lee, J. H. Growth and Field Electron Emission of Vertically
Aligned Multiwalled Carbon Nanotubes. Chem. Phys. Lett. 2000, 326, 175-180.
61. Armentano, I.; Alvarez-Pérez, M. A.; Carmona-Rodríguez, B.; Gutiérrez-Ospina, I.; Kenny, J.
M.; Arzate, H. Analysis of the Biomineralization Process on SWNTCOOH and F-SWNT
Films. Mater. Sci. Eng. C 2008, 28, 1522-1529.
62. Koruga, D.; Matija, L.; Misic, N.; Rakin, P. Fullerene C 60 : Properties and Possible Applica-
tions. Trans. Tech. Publ. Mat. Sci. Forum 1996, 214, 49-56.
63. Dai, H.; Shim, M.; Chen, R. J.; Li, Y.; Kam, N. W. S. Functionalization of Carbon Nanotubes
for Biocompatibility and Biomolecular Recognition. Nano Lett. 2002, 2, 285-288.
64. Gao, X. P.; Qin, X.; Wu, F.; Liu, H.; Lan, Y.; Fan, S. S.; Yuan, H. T.; Song, D. Y.; Shen, P. W.
Synthesis of Carbon Nanotubes by Catalytic Decomposition of Methane Using LaNi 5 Hydro-
gen Storage Alloy as Catalyst. Chem. Phys. Lett. 2000, 327, 271-276.
65. Iijima, S.; Brabec, C.; Maiti, A.; Bernholc, J. Structural Flexibility of Carbon Nanotubes.
J. Chem. Phys. 1996, 104, 2089-2092.
66. Lovat, V.; Pantarotto, D.; Lagostena, L.; Cacciari, B.; Grolfo, M.; Righi, M., et al. Nanotube
Substrates Boost Neuronal Electrical Signaling. Nano Lett. 2005, 5, 1107-1110.
67. Osawa, E. C 60 : Buckminsterfullerene. Kagaku 1970, 25, 854.
68. Nasibulin, A. G.; Pikhitsa, P. V.; Jiang, H.; Brown, D. P.; Krasheninnikov, A. V.; Anisimov, A. S.;
Queipo, P.; Moisala, A.; Gonzalez, D.; Lientschnig, G.; Hassanien, A.; Shandakov, S. D.;
Lolli, G.; Resasco, D. E.; Choi, M.; Tomanek, D.; Kauppinen, E. I. A Novel Hybrid Carbon
Material. Nat. Nanotechnol. 2007, 2, 156-161.
Search WWH ::




Custom Search