Biomedical Engineering Reference
In-Depth Information
also complicated by the coating proteins and other biomolecules on NMs exposed
to biological matrix. In addition, exposure estimation is also hampered by lack of
information on product use and the use of multiple products containing NMs.
The health and environmental hazards of NMs have been demonstrated by vari-
ous research groups 48,51,52,55,95,98,131,168,170,178,185,187,189,195 for a variety of manufac-
tured NMs that may be toxic to humans and the environment. But, there is a need
for NM hazard identification. While such as paradigm is not yet in place, a case by
case approach is still the only approach available for the risk assessment of NMs.
The patent landscape in nanotechnology is gaining much attention because
of the projected market and impact in the health and life sciences. Market pro-
jections outweigh a lot of existing industries creating investment interest of
exorbitant quantities. Much more research and specifications in nanotechnology
needs to be in place in order that faster reviews of patents with less overlap can
be issued. A lot of activities are going worldwide as shown in the unprecedented
increase in patents from various parts of the world with the US leading the pack.
REFERENCES
1. Bakry, R.; Vallant, R. M.; Najam-ul-hag, M.; Rainer, M.; Szabo, Z.; Huck, C. W.; Bonn, G. K.
Medicinal Applications of Fullerenes. Int. J. Nanomed. 2007, 2, 639-649.
2. Jan, E.; Kotov, N. A. Successful Differentiation of Mouse Neural Stem Cells on Layer-by-layer
Assembled Single-walled Carbon Nanotube Composite. Nano. Lett. 2007, 7, 1123-1128.
3. Nasibulin, A. G.; Moisala, A.; Jiang, H.; Kauppinen, E. I. Carbon Nanotube Synthesis by a
Novel Aerosol Method. J. Nanopart. Res. 2006, 8, 465-475.
4. Aguilar, Z.; Aguilar, Y.; Xu, H.; Jones, B.; Dixon, J.; Xu, H.; Wang, A. Nanomaterials in Medi-
cine. Electrochem. Soc. Trans. 2010, 33, 69-74.
5. Aguilar, Z.; Xu, H.; Jones, B.; Dixon, J.; Wang, A. Semiconductor Quantum Dots for Cell
Imaging. Mater. Res. Soc. Proc. 2010, 1237 , 1237-TT1206-1201.
6. Geiber, D.; Charbonnière, L. J.; Ziessel, R. F.; Butlin, N. G.; Löhmannsröben, H.;
Hildebrandt, N. Quantum Dot Biosensors for Ultrasensitive Multiplexed Diagnostics.
Angew. Chem. Int. Ed. 2010, 49, 1-6.
7. Juzenas, P.; Chen, W.; Sun, Y. P.; Coelho, M. A. N.; Genralov, R.; Genralova, N.; Christensen,
I. L. Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. Adv.
Drug Deliv. Rev. 2008, 60 .
8. Khawaja, A. M. Review: The Legacy of Nanotechnology: Revolution and Prospects in Neuro-
surgery. Int. J. Surg. 2011, 9(8) , 608-614.
9. Smith, A. M.; Duan, H.; Mohs, A. M. Bioconjugated Quantum Dots for In vivo Molecular and
Cellular Imaging. Adv. Drug Deliv. Rev. 2008, 60 .
10. Su, H.; Xu, H.; Gao, S.; Dixon, J.; Aguilar, Z. P.; Wang, A.; Xu, J.; Wang, J. Microwave
Synthesis of Nearly Monodisperse Core/Multishell Quantum Dots with Cell Imaging Applica-
tions. Nanoscale Res. Lett. 2010, 5, 625-630.
11. Xu, H.; Aguilar, Z.; Dixon, J.; Jones, B.; Wang, A.; Wei, H. Breast Cancer Cell Imaging using
Semiconductor Quantum Dots. Electrochem. Soc. Trans. 2009, 25, 69-77.
12. Xu, H.; Aguilar, Z.; Waldron, J.; Wei, H.; Wang, Y. Application of Semiconductor Quantum
Dots for Breast Cancer Cell Sensing, 2009 Biomedical Engineering and Informatics. IEEE
Comp. Soc. BMEI 2009, 1, 516-520.
Search WWH ::




Custom Search