Biomedical Engineering Reference
In-Depth Information
277. Harrison, B. S.; Atala, A. Carbon Nanotube Applications for Tissue Engineering. Biomaterials
2007, 28, 344-353.
278. Dumortier, H.; Lacotte, S.; Pastorin, G.; Marega, R.; Wu, W.; Bonifazi, D., et al. Functional-
ized Carbon Nanotubes are Non-Cytotoxic and Preserve the Functionality of Primary Immune
Cells. Nano. Lett. 2006, 6, 1522-1528.
279. Tian, F.; Cui, D.; Schwarz, H.; Estrada, G.; Kobayashic, H. Cytotoxicity of Singlewall Carbon
Nanotubes on Human Fibroblasts. Toxicol. In Vitro 2006, 20, 1202-1212.
280. Mattson, M. P.; Haddon, R. C.; Rao, A. M. Molecular Functionalization of Carbon Nanotubes
and use as Substrates for Neuronal Growth. J. Mol. Neurosci. 2000, 14, 175-182.
281. Lovat, V.; Pantarotto, D.; Lagostena, L.; Cacciari, B.; Grolfo, M.; Righi, M., et al. Nanotube
Substrates Boost Neuronal Electrical Signaling. Nano. Lett. 2005, 5, 1107-1110.
282. Mwenifumbo, S.; Shaffer, M. S.; Stevens, M. M. Exploring Cellular Behaviour with Multi-
Walled Carbon Nanotube Constructs. J. Mater. Chem. 2007, 17, 1894-1902.
283. Smart, S. K.; Cassady, A. I.; Lu, G. Q.; Martin, D. J. The Biocompatibility of Carbon Nano-
tubes. Carbon 2006, 44, 1034-1047.
284. Xiao, G. Solvent-Induced Changes on Corona-Discharge-Treated Polyolefin Surfaces Probed
by Contact Angle Measurement. J. Colloid Interface Sci. 1995, 171, 200-204.
285. Otsuka, H.; Nagasaki,Y.; Kataoka, K. Dynamic Wettability Study on the Functionalized PEGylated
Layer on a Polylactide Surface Constructed by Coating of Aldehyde-Ended Poly(ethylene glycol)
(PEG)/Polylactide (PLA) Block Copolymer. Sci. Technol. Adv. Mater. 2000, 1, 21-29.
286. Tang, Z. G.; Black, R. A. Surface Properties and Biocompatibility of Solvent-Cast Poly[3-
caprolactone] Films. Biomaterials 2004, 25, 4741-4748.
287. Song, W.; Zheg, Z.; Tang, W.; Wang, X. A Facile Approach to Covalently Functionalized
Carbon Nanotubes with Biocompatible Polymer. Polymer 2007, 48, 3658-3663.
288. Hong, Z. K.; Zhang, P.; He, C.; Qiu, X.; Liu, A.; Chen, L., et al. Nano-Composite of
Poly(Llactide) and Surface Grafted Hydroxyapatite: Mechanical Properties and Biocompat-
ibility. Biomaterials 2005, 26, 6296-6304.
289. Zhang, D.; Kandadai, M. A.; Cech, J.; Roth, S.; Curran, S. A. Poly(L-lactide) (PLLA)/Mul-
tiwalled Carbon Nanotube (MWCNT) Composite: Characterization and Biocompatibility
Evaluation. J. Phys. Chem. B 2006, 110, 1291-1295.
290. Paiva, M. C.; Zhou, B.; Fernando, K. A. S.; Lin, Y.; Kennedy, J. M.; Sun, Y. P. Mechanical and
Morphological Characterization of Polymerecarbon Nanocomposites from Functionalized
Carbon Nanotubes. Carbon 2004, 42, 2849-2854.
291. Mamedov, A. A.; Kotov, N. A.; Prato, M.; Guldi, D. M.; Wicksted, J. P.; Hirsch, A. Molecular
Design of Strong Single-Wall Carbon Nanotube/Polyelectrolyte Multilayer Composites. Nat.
Mater. 2002, 1, 190-194.
292. Wu, D.; Wu, L.; Sun, Y.; Zhang, M. Rheological properties and crystallization behavior of
multi-walled carbon nanotube/poly(3-caprolactone) composites 2007, 25, 3137-3147.
293. Rai, M.; Yadav, A.; Gade, A. Recently, A Variety of Nanocomposites based on Polyester And-
carbon Nanostructures have been Explored for Potential use Asscaffold Materials. Biotechnol.
Adv. 2009, 27, 76-83.
294. Schneider, O. D.; Loher, S.; Brunner, T. J.; Schmidlin, P.; Stark, W. J. Flexible, Silver Con-
taining Nanocomposites for the Repair of Bone Defects: Antimicrobial Effect Against E. coli
Infection and Comparison to Tetracycline Containing Scaffolds. J. Mater. Chem. 2008, 18,
2679-2684.
295. Xu, X.; Yang, Q.; Bai, J.; Lu, T.; Li, Y.; Jing, X. Fabrication of Biodegradable Electrospun
Poly(L-lactide-co-glycolide) Fibers with Antimicrobial Nanosilver Particles. J. Nanosci.
Nanotechnol. 2008, 8, 5066-5070.
Search WWH ::




Custom Search