Biomedical Engineering Reference
In-Depth Information
257. Yang, F.; Sanne, K. B.; Yang, X.; Wallboomers, X. F.; Jansen, J. A., et al. Development of
an Electrospun Nano-Apatite/PCL Composite Membrane for GTR/GBR Application. Acta.
Biomater. 2009, 5, 3295-3304.
258. Pektok, E.; Nottelet, B.; Tille, J. C.; Gurny, R.; Kalangos, A.; Moeller, M., et al. Degradation
and Healing Characteristics of Small-Diameter Poly(3-caprolactone) Vascular Grafts in the
Rat Systemic Arterial. Circulation 2008, 118, 2563-2570.
259. Aishwarya, S.; Mahalakshmi, S.; Sehgal, P. K. Collagen-Coated Polycaprolactone Micropar-
ticles as a Controlled Drug Delivery System. J. Microencapsul. 2008, 25, 298-306.
260. Freed, L. E.; Novakovic, G. V.; Biron, R. J.; Eagles, D. B.; Lesnoy, D. C.; Barlow, S. K., et al.
Biodegradable Polymer Scaffolds for Tissue Engineering. Biotechnology 1994, 12, 689-693.
261. Ferraz, M. P.; Monteriro, F. J.; Manuel, C. M. Hydroxyapatite Nanoparticles: A Review of
Preparation Methodologies. J. Appl. Biomater. Biomech. 2004, 2, 74-80.
262. Woodard, R.; Hilldore, A. J.; Lan, S. K.; Park, C. J.; Morgan, A. W.; Eurell, J. A. C., et al. The
Mechanical Properties and Osteoconductivity of Hydroxyapatite Bone Scaffolds with Multi-
Scale Porosità. Biomaterials 2007, 28, 45-54.
263. Webster, T. J.; Ergun, C.; Doremus, R. H.; Siegel, R. W.; Bizios, R. Enahnced Functions if
Osteoblasts on Nanophase Ceramics. Biomaterials 2000, 2, 1803-1810.
264. Liao, S. S.; F.Z., C.; Zhu, Y. Osteoblasts Adherence and Migration through Threedimensional
Porous Mineralized Collagen based Composite: nHAC/PLA. J. Bioact. Compat. Polym. 2004,
19, 117-130.
265. Hench, L. L.; Polak, J. M. Third-Generation Biomedical Materials. Science 2002, 295, 1014-1017.
266. Kretlow, J. D.; Mikos, A. G. Review: Mineralization of Synthetic Polymer Scaffolds for Bone
Tissue Engineering. Tissue Eng 2007, 13, 927-938.
267. Dresselhaus, M. S.; Dresselhaus, G.; Eklund, P. C. Science of Fullerenes and Carbon Nano-
tubes ; Academic Press: San Diego, 2001.
268. Lee, C. J.; Park, J.; Kang, S. Y.; Lee, J. H. Growth and Field Electron Emission of Vertically
Aligned Multiwalled Carbon Nanotubes. Chem. Phys. Lett. 2000, 326, 175-180.
269. Sun, L. F.; Liu, Z. Q.; Ma, X. C.; Zhong, Z. Y.; Tang, S. B.; Xiong, Z. T., et al. Growth of
Carbon Nanotube Arrays using the Existing Array as a Substrate and their Raman Character-
ization. Chem. Phys. Lett. 2001, 340, 222-226.
270. Thostenson, E. T.; Ren, Z.; Chou, T. Advances in the Science and Technology of Carbon
Nanotubes and their Composites: A Review. Compos. Sci. Technol. 2001, 61, 899-1912.
271. Zhang, X.; Liu, T.; Sreekumar, T. V.; Kumar, S.; Moore, V. C.; Hauge, R. H., et al.
Poly(vinylalcohol)/SWNT Composite Film. Nano. Lett. 2003, 3, 1285-1288.
272. Valentini, L.; Armentano, I.; Biagiotti, J.; Kenny, J. M.; Santucci, S. Frequency Dependent
Electrical Transport between Conjugated Polymer and Singlewalled Carbon Nanotubes.
Diam. Relat. Mater. 2003, 12, 1601-1609.
273. Chen, G. X.; Kim, H. S.; Park, B. H.; Yoon, J. S. Controlled Functionalization of Multiwalled
Carbon Nanotubes with Various Molecular-Weight Poly(L-lactic acid). J. Phys. Chem. B.
2005, 109, 22237-22243.
274. Armentano, I.; Alvarez-Pérez, M. A.; Carmona-Rodríguez, B.; Gutiérrez-Ospina, I.;
Kenny, J. M.; Arzate, H. Analysis of the Biomineralization Process on SWNTCOOH and
F-SWNT Films. Mater. Sci. Eng. C 2008, 28, 1522-1529.
275. Dai, H.; Shim, M.; Chen, R. J.; Li, Y.; Kam, N. W. S. Functionalization of Carbon Nanotubes
for Biocompatibility and Biomolecular Recognition. Nano. Lett. 2002, 2, 285-288.
276. Correa-Duarte, M. A.; Wagner, N.; Rojas-Chapana, J.; Morsczeck, C.; Thie, M.; Giersig, M.
Fabrication and Biocompatibility of Carbon Nanotube-Based 3d Networks as Scaffolds for
Cell Seeding and Growth. Nano. Lett. 2004, 4, 2233-2236.
Search WWH ::




Custom Search