Biomedical Engineering Reference
In-Depth Information
180. Shi, X.; Hudson, J. L.; Spicer, P. P.; Tour, J. M.; Krishnamoorti, R.; Mikos, A. G. Injectable
Nanocomposites of Single-Walled Carbon Nanotubes and Biodegradable Polymers for Bone
Tissue Engineering. Biomacromolecules 2006, 7, 2237-2242.
181. Khang, D.; Kim, S. Y.; Liu-Snyder, P.; Palmore, G. T. R.; Durbin, S. M.; Webster, T. J. Enhanced
fibronectin Adsorption on Carbon Nanotube/Poly(Carbonate) Urethane: Independent Role of
Surface Nano-Roughness and Associated Surface Energy. Biomaterials 2007, 28, 4756-4768.
182. Khang, D.; Lu, J.; Yao, C.; Haberstroh, K. M.; Webster, T. J. The role of Nanometer and
Sub-Micron Surface Features on Vascular and Bone Cell Adhesion on Titanium. Biomaterials
2008, 29, 970-983.
183. Hallab, N. J.; Bundy, K. J.; O'Connor, K.; Moses, R. L.; Jacobs, J. J. Evaluation of Metal-
lic and Polymeric Biomaterial Surface Energy and Surface Roughness Characteristics for
Directed Cell Adhesion. Tissue Eng. 2001, 7, 55-71.
184. Price, R. L.; Waid, M. C.; Haberstroh, K. M.; Webster, T. J. Selective Bone Cell Adhesion on
Formulations Containing Carbon Nanofibers. Biomaterials 2003, 24, 1877-1887.
185. Cales, B.; Stefani, Y. Mechanical Properties and Surface Analysis of Retrieved Zirconia Hip
Joint Heads after an Implantation Time of Two to Three Years. J. Mater. Sci. Mater. Med.
1994, 5, 376-380.
186. Kohal, R. J.; Papavasiliou, G.; Kamposiora, P.; Tripodakis, A.; Strub, J. R. Three-Dimensional
Computerized Stress Analysis of Commercially Pure Titanium and Yttrium-Partially Stabi-
lized Zirconia Implants. Int. J. Prosthodont. 2002, 15, 189-194.
187. Lacefield, W. R. Materials Characteristics of Uncoated/Ceramic-Coated Implant Materials.
Adv. Dent. Res. 1999, 13, 21-26.
188. Akagawa, Y.; Ichikawa, Y.; Nikai, H.; Tsuru, H. Interface Histology of Unloaded and Early
Loaded Partially Stabilized Zirconia Endosseous Implant in Initial Bone Healing. J. Prosthet.
Dent. 1993, 69, 599-604.
189. Tamai, N.; Myoui, A.; Hirao, M. A New Biotechnology for Articular Cartilage Repair: Sub-
chondral Implantation of a Composite of Interconnected Porous Hydroxyapatite, Synthetic
Polymer (PLA-PEG), and Bone Morphogenetic Protein-2 (rhBMP-2). Osteoarthritis Carti-
lage 2005, 13, 405-417.
190. Langer, R.; Vacanti, J. P. Tissue Engineering. Science 1993, 260, 9220-9926.
191. Wang, P.; Hu, J.; Ma, P. X. The Engineering of Patient-Specific, Anatomically Shaped, Digits.
Biomaterials 2009, 30, 2735-2740.
192. Liu, X.; Jin, X.; Ma, P. X. Nanofibrous Hollow Microspheres Self-Assembled from Star-
Shaped Polymers as Injectable Cell Carriers for Knee Repair. Nat. Mater. 2011, 10, 398-406.
193. Elisseeff, J.; Anseth, K.; Sims, D.; McIntosh, W.; Randolph, M.; Langer, R. Transdermal Pho-
topolymerization for Minimally Invasive Implantation. PNAS 1999, 96, 3104-3107.
194. Kloxin, A. M.; Kasko, A. M.; Salinas, C. N.; Anseth, K. S. Photodegradable Hydrogels for
Dynamic Tuning of Physical and Chemical Properties. Science 2009, 324, 59-63.
195. Rice, M. A.; Waters, K. R.; Anseth, K. S. Ultrasound Monitoring of Cartilaginous Matrix
Evolution in Degradable PEG Hydrogels. Acta. Biomater. 2009, 5, 152-161.
196. Wang, D. A.; Varghese, S.; Sharma, B.; Strehin, I.; Fermanian, S.; Gorham, J.; Fairbrother,
D. H.; Cascio, B.; Elisseeff, J. H. Multifunctional Chondroitin Sulphate for Cartilage Tissue-
Biomaterial Integration. Nat. Mater. 2007, 6, 385-392.
197. Benoit, D. S.; Schwartz, M. P.; Durney, A. R.; Anseth, K. S. Small Functional Groups for
Controlled Differentiation of Hydrogel-Encapsulated Human Mesenchymal Stem Cells. Nat.
Mater. 2008, 7, 816-823.
198. Strehin, I.; Nahas, Z.; Arora, K.; Nguyen, T.; Elisseeff, J. A Versatile pH Sensitive Chondroitin
Sulfate-PEG Tissue Adhesive and Hydrogel. Biomaterials 2010, 31, 2788-2797.
Search WWH ::




Custom Search