Biomedical Engineering Reference
In-Depth Information
124. Park, E. J.; Yoon, J.; Choi, K.; Yi, J.; Park, K. Induction of Chronic Inflammation in Mice Treated
with Titanium Dioxide Nanoparticles by Intratracheal Instillation. Toxicology 2009, 260, 37-46.
125. Wagner, E. M.; Sanchez, J.; McClintock, J. Y.; Jenkins, J.; Moldobaeva, A. Inflammation and
Ischemia-Induced Lung Angiogenesis. Am. J. Physiol. Lung Cell Mol. Physiol. 2008, 294,
L351-L357.
126. Boissard, C. I.; Bourban, P. E.; Tami, A. E.; Alini, M.; Eglin, D. Nanohydroxyapatite/Poly-
(Ester-Urethane) Scaffold for Bone Tissue Engineering. Acta. Biomater. 2009, 5, 3316-3327.
127. Armentano, I.; Dottori, M.; Fortunati, E.; Mattioli, S.; Kenny, J. M. Biodegradable Polymer
Matrix Nanocomposites for Tissue Engineering: A Review. Polym. Degrad. Stab. 2010, 95,
2126-2146.
128. Nejati, E.; Mirzadeh, H.; Zandi, M. Synthesis and Characterization of Nanohydroxyapatite
Rods/Poly(L-Lactide Acid) Composite Scaffolds for Bone Tissue Engineering. Compos. Part
A 2008, 39, 1589-1596.
129. Wie, G.; Ma, P. X. Structure and Properties of Nano-Hydroxyapatite/Polymer Composite
Scaffolds for Bone Tissue Engineering. Biomaterials 2004, 25, 4749-4757.
130. Smith, I. O.; Liu, X. H.; Smith, L. A.; Ma, P. X. Nanostructured Polymer Scaffold for Tissue
Engineering and Regenerative Medicine. Interdiscip. Rev. Nanomed. Nanobiotechnol. 2009,
1, 226-236.
131. Shuai, C.; Gao, C.; Nie, Y.; Hu, H.; Zhou, Y.; Peng, S. Structure and Properties of Nano-
Hydroxypatite Scaffolds for Bone Tissue Engineering with a Selective Laser Sintering Sys-
tem. Nanotechnology 2011, 22, 285703.
132. Behneke, A.; Behneke, N.; D'hoedt, B. A 5-year Longitudinal Study of the Clinical Effective-
ness of ITI Solid-Screw Implants in the Treatment of Mandibular Edentulism. Int. J. Oral.
Maxillofac. Implants 2002, 17, 799-810.
133. Webster, T. J.; Siegel, R. W.; Bizios, R. Osteoblast Adhesion on Nanophase Ceramics. Bioma-
terials 1999, 20, 1221-1227.
134. Webster, T. J.; Ergun, C.; Doremus, R. H. Enhanced Functions of Osteoblasts on Nanophase
Ceramics. Biomaterials 2000, 21, 1803-1810.
135. Gutwein, L. G.; Tepper, F.; Webster, T. J. Increased viable osteoblast cell density in the pres-
ence of nanophase compared to conventional alumina and titania particles. Biomaterials 2004,
25, 4175-4183.
136. Albrektsson, T.; Wennerberg, A. Oral Implant Surfaces: Part 1-Review Focusing on Topo-
graphic and Chemical Properties of Different Surfaces and In Vivo Responses to Them. Int. J.
Prosthodont. 2004, 7, 536-543.
137. Liu, H.; Slamovich, E. B.; Webster, T. J. Increased Osteoblast Functions among Nanophase
Titania/Poly(lactide-co-glycolide) Composites of the Highest Nanometer Surface Roughness.
J. Biomed. Mater. Res. 2006, 78, 798-807.
138. Medonca, G.; Medonca, D. B. S.; Aragao, F. J. L.; Cooper, L. F. Review: Advancing Den-
tal Implant Surface Technology - From Micron- to Nanotopography. Biomaterials 2008, 29,
3822-3835.
139. Webster, T. J.; Ejiofor, J. U. Increased Osteoblast Adhesion on Nanophase Metals: Ti, Ti 6 Al 4 V,
and CoCrMo. Biomaterials 2004, 25, 4731-4739.
140. Scotchford, C. A.; Gilmore, C. P.; Cooper, E.; Leggett, G. J.; Downes, S. Protein Adsorp-
tion and Human Osteoblast-Like Cell Attachment and Growth on Alkylthiol on Gold Self-
Assembled Monolayers. J. Biomed. Mater. Res. 2002, 59, 84-99.
141. Germanier, Y.; Tosatti, S.; Broggini, N.; Textor, M.; Buser, D. Enhanced Bone Apposition
Around Biofunctionalized Sandblasted and Acid-Etched Titanium Implants Surfaces. A histo-
morphometric study in Miniature pigs. Clin. Oral. Implants Res. 2006, 17, 251-257.
Search WWH ::




Custom Search