Biomedical Engineering Reference
In-Depth Information
envisions that the students, scientists, engineers, and the professionals will gain
much needed awareness in NMs and their various applications in nanomedi-
cine. At the same time, this topic also provides sufficient information to apply
the concepts discussed and the processes presented to improve on existing pro-
cesses or to begin new R&Ds to develop new applications of NMs in medicine
and/or to develop novel biocompatible NMs for medical applications. It is the
author's vision to inspire more interest in the medical applications of NMs.
REFERENCES
1. RNCOS Nanotechnology Market Forecast to 2014 . 2012.
2. Ahmad, M. B.; Shameli, K.; Darroudi, M.; Yunus, W.; Ibrahim, N. A. Synthesis and Character-
ization of Silver/Clay Nanocomposites by Chemical Reduction Method. Am. J. Appl. Sciences
2009, 6, 1909-1914.
3. Borum-Nicholas, L.; Wilson, J. O. C. Surface Modification of Hydroxyapatite. Part I. Dodecyl
Alcohol. Biomaterials 2003, 24, 367-369.
4. Carbó-Argibay, E.; Rodríguez-González, B.; Pastoriza-Santos, I.; Pérez-Juste, J.; Liz-Marán,
L. M. Growth of Pentatwinned Gold Nanorods into Truncated Decahedra. Nanoscale 2010, 2,
2377-2383.
5. Huang, C.; Zusing Yang, Z.; Lee, K.; Chang, H. Synthesis of Highly Fluorescent Gold
Nanoparticles for Sensing Mercury(II). Angew. Chem. Int. Ed. 2007, 46, 6824-6828.
6. Li, J.; Lu, X. L.; Zheng, Y. F. Effect of Surface Modified Hydroxyapatite on the Tensile Prop-
erty Improvement of HA/PLA Composite. Appl. Surf. Sci. 2008, 255, 494-497.
7. Nasibulin, A. G.; Moisala, A.; Jiang, H.; Kauppinen, E. I. Carbon Nanotube Synthesis by a
Novel Aerosol Method. J. Nanopart. Res. 2006, 8, 465-475.
8. Sau, T. K.; Murphy, C. J. Room Temperature, High-Yield Synthesis of Multiple Shapes of
Gold Nanoparticles in Aqueous Solution. J. Am. Chem. Soc. 2004, 126, 8648-8649.
9. Su, H.; Xu, H.; Gao, S.; Dixon, J.; Aguilar, Z. P.; Wang, A., et al. Microwave Synthesis of
Nearly Monodisperse Core/Multishell Quantum Dots with Cell Imaging Applications.
Nanoscale. Res. Lett. 2010, 5, 625-630.
10. Webster, T. J.; Ergun, C. D.; Siegel, R. W.; Bizios, R. Enhanced Functions of Osteoclast-Like
Cells on Nanophase Ceramics. Biomaterials 2001, 22, 1327-1333.
11. Barrett, T.; Ravizzini, G.; Choyke, P.; Kobayashi, H. Dendrimers in Medical Nanotechnology.
IEEE. Eng. Med. Biol. Mag. 2009, 28, 12-22.
12. Bharali, D.; Khalil, M.; Gurbuz, M.; Simone, T.; Mousa, S. Nanoparticles and Cancer Ther-
apy: A Concise Review with Emphasis on Dendrimers. Int. J. Nanomedicine. 2009, 4, 1-7.
13. Langer, R.; Vacanti, J. P. Tissue Engineering. Science 1993, 260, 9220-9926.
14. Li-Na, M.; Dian-Jun, L.; Zhen-Xin, W. Synthesis and Applications of Gold Nanoparticle
Probes. Chinese J. Anal. Chem. 2010, 38, 1-7.
15. Mahmoudi, M.; Sant, S.; Wang, B.; Laurent, S.; Sen, T. Superparamagnetic Iron Oxide
Nanoparticles (SPIONs): Development, Surface Modification and Applications in Chemo-
therapy. Adv. Drug Deliv. Rev. 2011, 63, 24-46.
16. Wilhelm, C.; Gazeau, F. Universal Cell Labelling with Anionic Magnetic Nanoparticles. Bio-
materials 2008, 29, 3161-3174.
17. Xie, J.; Peng, S.; Brower, N.; Pourmand, N.; Wang, S. X.; Sun, S. One-Pot Synthesis of
Monodisperse Iron Oxide Nanoparticles for Potential Biomedical Applications. Pure. Applied
Chem. 2006, 78, 1003-1014.
Search WWH ::




Custom Search