Biomedical Engineering Reference
In-Depth Information
177. Gang, J.; Park, S. B.; Hyung, W.; Choi, E. H.; Wen, J.; Kim, H. S.; Shul, Y. G.; Haam, S.; Song,
S. Y. Magnetic Poly Epsilon-Caprolactone Nanoparticles Containing Fe 3 O 4 and Gemcitabine
Enhance Anti-tumor Effect in Pancreatic Cancer Xenograft Mouse Model. J. Drug Target.
2007, 15, 445-453.
178. Cao, H.; Gan, J.; Wang, S., et al. Novel Silica-Coated Iron-Carbon Composite Particles and
Their Targeting Effect as a Drug Carrier. J. Biomed. Mater. Res. 2008, 86, 671-677.
179. Chertok, B.; Cole, A. J.; David, A. E.; Yang, V. C. Comparison of Electron Spin Resonance
Spectroscopy and Inductively-Coupled Plasma Optical Emission Spectroscopy for Biodistri-
bution Analysis of Iron-Oxide Nanoparticles. Mol. Pharm. 2010, 7, 375-385.
180. Chertok, B.; Moffat, B. A.; David, A. E.; Yu, F.; Bergemann, C.; Ross, B. D.; Yang, V. C. Iron
Oxide Nanoparticles as a Drug Delivery Vehicle for MRI Monitored Magnetic Targeting of
Brain Tumors. Biomaterials 2008, 29, 486-496.
181. Cho, H. S.; Dong, Z.; Pauletti, G. M., et al. Fluorescent, Superparamagnetic Nanospheres
for Drug Storage, Targeting, and Imaging: A Multifunctional Nanocarrier System for Cancer
Diagnosis and Treatment. ACS Nano 2010, 4, 5398-5404.
182. Quan, Q.; Xie, J.; Gao, H., et al. HSA Coated Iron Oxide Nanoparticles as Drug Delivery
Vehicles for Cancer Therapy. Mol. Pharm. 2011, 8, 1669-1676.
183. Jain, K. K. Use of Nanoparticles for Drug Delivery in Glioblastome Multiforme. Exp. Rev.
Neurother. 2007, 7, 363-372.
184. Alexiou, C.; Arnold, W.; Klein, R. J., et al. Locoregional Cancer Treatment with Magnetic
Drug Targeting. Cancer Res. 2006, 60, 6641-6648.
185. Lübbe, A. S.; Alexiou, C.; Bergemann, C. Clinical Applications of Magnetic Drug Targeting.
J. Surg. Res. 2001, 95, 200-206.
186. Tietze, R.; Schreiber, E.; Lyer, S.; Alexiou, C. Mitoxantrone Loaded Superparamagnetic
Nanoparticles for Drug Targeting: A Versatile and Sensitive Method for Quantification of
Drug Enrichment in Rabbit Tissues Using HPLC-UV. J. Biomed. Biotech. 2010.
187. El-Sayed, I. H. Nanotechnology in Head and Neck Cancer: The Race Is On. Curr. Oncol. Rep.
2010, 12, 121-128.
188. Gojova, A.; Guo, B.; Kota, R. S.; Rutledge, J. C.; Kennedy, I. M.; Barakat, A. I. Induction of
Inflammation in Vascular Endothelial Cells by Metal Oxide Nanoparticles: Effect of Particle
Composition. Environ. Health Perspect. 2007, 3, 403-409.
189. Zhu, M. T.; Wang, Y.; Feng, Y. W., et al. Oxidative Stress and Apoptosis Induced by Iron Oxide
Nanoparticles in Cultured Human Umbilical Endothelial Cells. J. Nanosci. Nanotech. 2010,
10, 8584-8590.
190. Zhu, M. T.; Wang, B.; Wang, Y., et al. Endothelial Dysfunction and Inflammation Induced
by Iron Oxide Nanoparticle Exposure: Risk Factors for Early Atherosclerosis. Toxicol. Lett.
2011, 203, 162-171.
191. Hanini, A.; Schmitt, A.; Kacem, K.; Chau, F.; Ammar, S.; Gavard, J. Evaluation of Iron Oxide
Nanoparticle Biocompatibility. Int. J. Nanomed. 2011, 6, 787-794.
192. Alekseenko, A. V.; Waseem, T. V.; Fedorovich, S. V. Ferritin, a Protein Containing Iron
Nanoparticles, Induces Reactive Oxygen Species Formation and Inhibits Glutamate Uptake in
Rat Brain Synaptosomes. Brain Res. 2008, 1241, 193-200.
193. López-Castro, J. D.; Maraloiu, A. V.; Delgado, J. J., et al. From Synthetic to Natural Nanopar-
ticles: Monitoring the Biodegradation of SPIO (P904) into Ferritin by Electron Microscopy.
Nanoscale 2011, 3, 4597-4599.
194. McDevitt, M. R.; Chattopadhyay, D.; Kappel, B. J.; Jaggi, J. S.; Schiffman, S. R.; A. C.;
Njardarson, J. T.; Brentjens, R.; Scheinberg, D. A. Tumor Targeting with Antibody-Function-
alized, Radiolabeled Carbon Nanotubes. J. Nucl. Med. 2007, 48, 1180-1189.
Search WWH ::




Custom Search