Biomedical Engineering Reference
In-Depth Information
future, more efforts need to be made to move the proof-of-concept studies to the
applications of biosensors to the real-world samples. One trend of future research
is the integration of nanostructured sensors with microfluidics to form lab-on-chip
devices. Furthermore, more studies need to be performed to integrate the nano-
structured sensors with signal-processing instruments to build portable devices for
on-site measurement of analytes to meet the need for on-time (real time) moni-
toring the targets of interest and rapid assessment of risks. One of the resulting
examples is the point-of-care device that has an increasing need in the commercial
market.
REFERENCES
1. Tothill, I. T. Review: Biosensors for Cancer Markers Diagnostics. Semin. Cell Dev. Biol. 2009,
20, 55-62.
2. Haun, J. B.; Yoon, T.; Lee, H. J.; Weissleder, R. Magnetic Nanoparticle Biosensors. Wiley
Interdiscipl. Rev. Nanomed. Nanobiotechnol. 2010, 2, 291-304.
3. Velasco, M. N. Optical Biosensors for Probing at the Cellular Level: A Review of Recent
Progress and Future Prospects. Semin. Cell Dev. Biol. 2009, 20, 27-33.
4. Fan, X.; White, I. M.; Shopova, S. I.; Zhu, H.; Suter, J. D.; Sun, Y. Sensitive Optical Biosen-
sors for Unlabeled Targets: A Review. Anal. Chim. Acta 2008, 620, 8-26.
5. Khanna, V. K. New-Generation Nano-engineered Biosensors, Enabling Nanotechnologies and
Nanomaterials. Sens. Rev. 2008, 28, 39-45.
6. Aguilar, Z.; Aguilar, Y.; Xu, H.; Jones, B.; Dixon, J.; Xu, H.; Wang, A. Nanomaterials in Medi-
cine. Electrochem. Soc. Trans. 2010, 33, 69-74.
7. Aguilar, Z.; Xu, H.; Jones, B.; Dixon, J.; Wang, A. Semiconductor Quantum Dots for Cell
Imaging. Mater. Res. Soc. Symp. Proc. 2010, 1237 , 1237-TT1206-1201.
8. Dyadyusha, L.; Yin, H.; Jaiswal, S.; Brown, T.; Baumberg, J.; Booye, F.; Melvin, T. Quench-
ing of CdSe Quantum Dot Emission, a New Approach for Biosensing. Chem. Commun. 2005,
3201-3203.
9. Neely, A.; Perry, C.; Varisli, B.; Singh, A.; Arbneshi, T.; Senapati, D.; Kalluri, J.; Ray, P.
Ultrasensitive and Highly Selective Detection of Alzheimer's Disease Biomarker Using Two-
Photon Rayleigh Scattering Properties of Gold Nanoparticle. ACS Nano 2009, 3, 2834-2840.
10. Vaseashta, A.; Dimova-Malinovska, D. Nanostructured and Nanoscale Devices, Sensors and
Detectors. Sci. Technol. Adv. Mat. 2005, 6, 312-318.
11. Xu, H.; Aguilar, Z.; Dixon, J.; Jones, B.; Wang, A.; Wei, H. Breast Cancer Cell Imaging Using
Semiconductor Quantum Dots. Electrochem. Soc. Trans. 2009, 25, 69-77.
12. Xu, H.; Aguilar, Z.; Wei, H.; Wang, A. Development of Semiconductor Nanomaterial Whole
Cell Imaging Sensor on Silanized Microscope Slides. Front. Biosci. 2011, E3, 1013-1024.
13. Merkoci, A. Nanoparticles-Based Strategies for DNA, Protein and Cell Sensors. Biosens.
Bioelectron. 2010, 26, 1164-1177.
14. Wang, J. Nanomaterial-Based Electrochemical Biosensors. Analyst 2005, 130, 421-426.
15. Yun, Y.; Eteshola, E.; Bhattacharya, A.; Dong, Z.; Shim, J.; Conforti, L.; Kim, D.; Schulz, M.;
Ahn, C.; Watts, N. Tiny Medicine: Nanomaterial-Based Biosensors. Sensors 2009, 9, 9275-9299.
16. Hu, L.; Kim, H.; Lee, J.; Peumans, P.; Cui, Y. Scalable Coating and Properties of Transparent,
Flexible, Silver Nanowire Electrodes. ACS Nano 2010, 4, 2955-2963.
17. Xianmao, L.; Yavuz, M.; Tuan, H.; Korgel, B.; Xia, Y. Ultrathin Gold Nanowires Can Be
Obtained by Reducing Polymeric Strands of Oleylamine-AuCl Complexes Formed via Auro-
philic Interaction. J. Am. Chem. Soc. 2008, 130, 8900-8901.
Search WWH ::




Custom Search