Biomedical Engineering Reference
In-Depth Information
PCAST (President's Council of Advisors on Science and Technology). 2012. Report to the President and Congress
on the Fourth Assessment of the National Nanotechnology Initiative. April 2012 [online]. Available:
http://nano.gov/sites/default/files/pub_resource/pcast_2012_nanotechnology_final.pdf [accessed Mar.11,
2013].
PEN (Project on Emerging Nanotechnologies). 2013. Consumer Products. An Inventory of Nanotechnology-based
Consumer Products Currently on the Market [online]. Available: http://www.nanotechproject.org/
inventories/consumer/ [accessed July 2, 2013].
Perez, R.A., B.E. Albero, E. Miguel, J.L. Tadeo, and C. Sanchez-Brunete. 2013. A rapid procedure for the
determination of C60 and C70 fullerenes in soil and sediments by ultrasound-assisted extraction and
HPLC-UV. Anal. Sci. 29(5):533-538.
Pettit, M.E., and J.R. Lead. 2013. Minimum physicochemical characterization requirements for nanomaterial
regulation. Environ. Int. 52:41-50.
Phenrat, T., H.J. Kim, F. Fagerlund, T. Illangasekare, and G.V. Lowry. 2010. Empirical correlations to estimate
agglomeration, deposition, and transport of polyelectrolyte-modified Fe(0) nanoparticles at high particle
concentration in saturated porous media. J. Contam. Hydrol. 118(3-4):152-164.
Priester, J.H.,Y. Ge, R.E. Mielke, A.M. Horst, S.C. Moritz, K. Espinosa, J. Gelb, S.L. Walker, R.M. Nisbet, Y.J.
An, J.P. Schimel, R.G. Palmer, J.A. Hernandez-Viezcas, L. Zhao, J.L. Gardea-Torresdey, and P.A. Holden.
2012. Soybean susceptibility to manufactured nanomaterials with evidence for quality and soil fertility
interruption. Proc. Natl. Acad. Sci. USA 109(37):E2451-E2456.
Rhoads, K.P., D.J. Phares, A.S. Wexler, and M.V. Johnston. 2003. Size-resolved ultrafine particle composition
analysis, 1. Atlanta. J. Geophy. Res. 108(D7):8418.
Richman, E.K., and J.E. Hutchison. 2009. The nanomaterial characterization bottleneck. ACS Nano 3(9): 2441-
2446.
Robichaud, C.O., A.E. Uyar, M.R. Darby, L.G. Zucker, and M.R. Wiesner. 2009. Estimates of upper bounds and
trends in nano-TiO2 production as a basis for exposure assessment. Environ. Sci. Technol. 43(12):4227-
4233.
Roebben, G., S. Ramirez-Garcia, V.A. Hackley, M. Roesslein, F. Klaessig, V. Kestens, I. Lynch, C.M. Garner, A.
Rawle, A. Elder, V. L. Colvin, W. Kreyling, H.F. Krug, Z.A. Lewicka, S. McNeil, A. Nel, A. Patri, P.
Wick, M. Wiesner, T. Xia, G. Oberdörster, and K.A. Dawson. 2011. Interlaboratory comparison of size and
surface charge measurements on nanoparticles prior to biological impact assessment. J. Nanopart. Res.
13(7):2675-2687.
Rushton, E.K., J. Jiang, S.S. Leonard, S. Eberly, V. Castranova, P. Biswas, A. Elder, X. Han, R. Gelein, J.
Finkelstein, and G. Oberdörster. 2010. Concept of assessing nanoparticle hazards considering nanoparticle
dosimetric and chemical/biological response metrics. J. Toxicol. Environ. Health A 73(5):445-461.
Sayes, C.M., K.L. Reed, and D.B. Warheit. 2007. Assessing toxicity of fine and nanoparticles: Comparing in vitro
measurements to in vivo pulmonary toxicity profiles. Toxicol. Sci. 97(1):163-180.
Sayes, C.M., K.L. Reed, S. Subramoney, L. Abrams, and D.B. Warheit. 2009. Can in vitro assays substitute for in
vivo studies in assessing the pulmonary hazards of fine and nanoscale materials? J. Nanopart. Res.
11(2):421-431.
Schierz, A., A.N. Parks, K.M. Washburn, T.G. Chandler, and P.L. Ferguson. 2012. Characterization and quantitative
analysis of single-walled carbon nanotubes in the aquatic environment using near-infrared fluorescence
spectroscopy. Environ. Sci. Technol. 46(22):12262-12271.
Slikker, W., Jr., M.E. Andersen, M.S. Bogdanffy, J.S. Bus, S.D. Cohen, R.B. Conolly, R.M. David, N.G. Doerrer,
D.C. Dorman, D.W. Gaylor, D. Hattis, J.M. Rogers, R.W. Setzer, J.A. Swenberg, and K. Wallace. 2004.
Dose-dependent transitions in mechanisms of toxicity: Case studies. Toxicol. Appl. Pharmacol. 201(3):226-
294.
Stone, V., B. Nowack, A. Baun, N. van den Brink, F. von der Kammer, M. Dusinska, R. Handy, S. Hankin, M.
Hassellöv, E. Joner, and T.F. Fernandes. 2010. Nanomaterials for environmental studies: Classification
reference material issues, and strategies for physio-chemical characterization. Sci. Total Environ.
408(7):1745-1754.
Thomas, C.R., S. George, A.M. Horst, Z. Ji, R.J. Miller, J.R. Peralta-Videa, T. Xia, S. Pokhrel, L. Mädler, J.L.
Gardea-Torresdey, P.A. Holden, A.A. Keller, H.S. Lenihan, A.E. Nel, and J.I. Zink. 2011. Nanomaterials
in the environment: From materials to high-throughput screening to organisms. ACS Nano. 5(1):13-20.
Thomas, D.G., S. Gaheen , S.L. Harper , M. Fritts , F. Klaessig , E. Hahn-Dantona , D. Paik , S. Pan , G.A. Stafford , E.T.
Freund, J.D. Klemm, and N.A. Baker . 2013. ISA-TAB-Nano: A specification for sharing nanomaterial
research data in spreadsheet-based format. BMC Biotechnol. 13:2, doi:10.1186/1472-6750-13-2.
Search WWH ::




Custom Search