Biomedical Engineering Reference
In-Depth Information
30. M. Lewitzky, S. Yamanaka, Reprogramming somatic cells towards pluripotency by defined
factors. Curr. Opin. Biotechnol. 18 , 467-473 (2007)
31. T. Barberi, M. Bradbury, Z. Dincer, G. Panagiotakos, N.D. Socci, L. Studer, Derivation of
engraftable skeletal myoblasts from human embryonic stem cells. Nat. Med. 13 , 642-648
(2007)
32. D. Issadore, K.J. Humphry, K.A. Brown, L. Sandberg, D. Weitz, R.M. Westervelt, Microwave
dielectric heating of drops in microfluidic devices. Lab Chip 9 , 1701-1706, (2009)
33. M. Abdelgawad, A.R. Wheeler, The digital revolution: a new paradigm for microfluidics. Adv.
Mater. 21 , 920-925 (2009)
34. R.B. Fair, A. Khlystov, T.D. Tailor, V. Ivanov, R.D. Evans, P.B. Griffin, V. Srinivasan,
V.K. Pamula, M.G. Pollack, and J. Zhou, Chemical and biological applications of digital-
microfluidic devices. IEEE Des. Test of Comput. 24 (1), 10 (2007)
35. A.R. Wheeler, Putting Electrowetting to Work. Science. 322 , 539-540 (2008)
36. V. Srinivasan, V.K. Pamula, and R.B. Fair, An integrated digital microfluidic lab-on-a-chip for
clinical diagnostics on human physiological fluids. Lab Chip 4 , 310-315, (2004)
37. P. Paik, V.K. Pamula, and R.B. Fair, Rapid droplet mixer for digital microfluidic systems. Lab
Chip 3 , 253-259, (2003)
38. Y.-H. Chang, G.-B. Lee, F.-C. Huang, Y.-Y. Chen, J.-L. Lin, Integrated polymerase chain
reaction chips utilizing digital microfluidics. Biomed. Microdevices 8 , 215-225 (2006)
39. S.K. Cho, H. Moon, C.J. Kim, Creating, transporting, cutting, and merging liquid droplets by
electrowetting-based actuation for digital microfluidic circuits. J. Microelectromechanical syst.
12 (1), 70 (2003)
40. F. Su, K. Chakrabarty, Architectural-level synthesis of digital microfluidics-based biochips,
Proceedings of the IEEE International Conference on CAD , San Jose, California, USA,
pp. 223-228, (2004)
41. A.R. Wheeler, H. Moon, C.J. Kim, J.A. Loo, and R.L. Garrell, Electrowetting-based microflu-
idics for analysis of peptides and proteins by matrix-assisted laser desorption/ionization mass
spectroscopy. Anal. Chem. 76 , 4833-4838 (2004)
42. E.J. Griffith, S. Akella, M.K. Goldberg, Performance characterization of a reconfigurable
planar-array digital microfluidic system. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.
25 , 345-357 (2006)
43. C.G. Cooney, C.Y. Chen, M.R. Emerling, A. Nadim, J.D. Sterling, Electrowetting droplet
microfluidics on a single planar surface. Microfluid Nanofluid. 2 (5), 435-446 (2006)
44. J. Zeng, and T. Korsmeyer, Principles of droplet electrohydrodynamics for Lap-on-a-chip. Lab
Chip, 4 , 265-277 (2004)
45. H. Yang, V.N. Luk, M. Abelgawad, I. Barbulovic-Nad, A.R. Wheeler, A World-to-chip
interface for digital microfluidics Anal. Chem. 81 , 1061-1067 (2009)
46. A.R. Wheeler, H. Moon, C.A. Bird, R.R. Ogorzalek Loo, C.J. Kim, J.A. Loo, R. L. Garrell,
Digital microfluidics with in-line sample purification for proteomics analyses with MALDI-
MS. Anal. Chem. 77 , 534-540 (2005)
47. T. Franke, L. Schmid, D.A. Weitz, A, Wixforth, Magneto-mechanical mixing and manipulation
of picoliter volumes in vesicles. Lab Chip 9 , 2831-2835, (2009)
Search WWH ::




Custom Search