Biomedical Engineering Reference
In-Depth Information
60. T.M. Lee and I.M. Hsing, DNA-based bioanalytical microsystems for handheld device
applications. Anal. Chim. Acta. 556 , 26-37 (2006)
61. M.A. Dineva, L. MahiLum-Tapay, and H. Lee, Sample preparation: a challenge in the
development of point-of-care nucleic acid-based assays for resource-limited settings. Analyst
132 , 1193-1199 (2007)
62. L. Chen, A. Manz, and P.J. Day, Total nucleic acid analysis integrated on microfluidic devices.
Lab Chip 7 , 1413-1423 (2007)
63. F.M. Ausubel et al., Short Protocols in Molecular Biology: A Compendium of Methods from
Current Protocols in Molecular Biology (Wiley, New York, 1992)
64. C. Lui, N.C. Cady, and C.A. Batt, Nucleic Acid-based Detection of Bacterial Pathogens Using
Integrated Microfluidic Platform Systems. Sensors 9 , 3713-3744 (2009)
65. A.G. Crevillen, M. Hervas, M.A. Lopez, M.C. Gonzalez, and A. Escarpa, Real sample analysis
on microfluidic devices. Talanta 74 , 342-357 (2007)
66. J.S. Marcus, W.F. Anderson, and S.R. Quake, Microfluidic single-cell mRNA isolation and
analysis. Anal. Chem. 78 , 3084-3089 (2006)
67. L.A. Christel, K. Petersen, W. McMillan, and M.A. Northrup, Rapid, automated nucleic acid
probe assays using silicon microstructures for nucleic acid concentration. J. Biomech. Eng-
Trans. ASME 121 , 22-27 (1999)
68. WHO, Roadmap for rolling out Xpert MTB/RIF for rapid diagnosis of TB and MDR-TB (World
Health Organization, Geneva, 2010). 6 Dec 2010
69. C.C. Boehme, P. Nabeta, D. Hillemann, M.P. Nicol, S. Shenai, F. Krapp, J. Allen, R. Tahirli,
R. Blakemore, R. Rustomjee, A. Milovic, M. Jones, S.M. O'Brien, D.H. Persing, S. Ruesch-
Gerdes, E. Gotuzzo, C. Rodrigues, D. Alland, and M.D. Perkins, Rapid molecular detection of
tuberculosis and rifampin resistance. N. Engl. J. Med. 363 , 1005-1015 (2010)
70. C.S. Zhang, J.L. Xu, W.L. Ma, and W.L. Zheng, PCR microfluidic devices for DNA
amplification. Biotechnol. Adv. 24 , 243-284 (2006)
71. N.C. Cady, S. Stelick, M.V. Kunnavakkam, and C.A. Batt, Real-time PCR detection of Listeria
monocytogenes using an integrated microfluidics platform. Sensor. Actuat. B-Chem. 107 , 332-
341 (2005)
72. D. Braun, PCR by thermal convection. Mod. Phys. Lett. B 18 , 775-784 (2004)
73. D.S. Lee, S.H. Park, H.S. Yang, K.H. Chung, T.H. Yoon, S.J. Kim, K. Kim, and Y.T. Kim,
Bulk-micromachined submicroliter-volume PCR chip with very rapid thermal response and
low power consumption. Lab Chip 4 , 401-407 (2004)
74. J. Van Ness, L.K. Van Ness, and D.J. Galas, Isothermal reactions for the amplification of
oligonucleotides. Proc. Natl. Acad. Sci. U. S. A. 100 , 4504-4509 (2003)
75. T.A. Taton, C.A. Mirkin, and R.L. Letsinger, Scanometric DNA array detection with nanopar-
ticle probes. Science 289 , 1757-1760 (2000)
76. E. Schleicher, The clinical chemistry laboratory: current status, problems and diagnostic
prospects. Anal. Bioanal. Chem. 384 , 124-131 (2006)
77. F.B. Myers and L.P. Lee, Innovations in optical microfluidic technologies for point-of-care
diagnostics. Lab Chip 8 , 2015-2031 (2008)
78. A.W. Martinez, S.T. Phillips, M.J. Butte, G.M. Whitesides, Patterned paper as a platform for
inexpensive, low-volume, portable bioassays. Angew. Chem. Int. Ed. 46 , 1318-1320 (2007)
79. A.W. Martinez, S.T. Phillips, G.M. Whitesides, Three-dimensional microfluidic devices
fabricated in layered paper and tape, Proc. Natl. Acad. Sci. 105 , 19606-19611 (2008).
80. G.J. Kost, Principles and Practice of Point-of-Care Testing : (LWW, Philadelphia, 2002)
Search WWH ::




Custom Search