Biomedical Engineering Reference
In-Depth Information
the need to miniaturize all peripheral instrumentation. An important recent trend
is the increased attention in developing POC tests for the developing world [ 4 , 5 ].
Although targeted toward use in emerging and low-income countries, the design
constraints are remarkably similar across the world (Fig. 1.1 ). Trends toward
decentralized healthcare and personalized medicine ensure the importance in the
future of microdevices for point-of-care testing.
1. P.N. Floriano, Microchip-based assay systems: methods and applications : (Humana Press,
Totowa, 2007)
2. L.J. Kricka, Microchips, microarrays, biochips and nanochips: personal laboratories for the
21st century, Clin. Chim. Acta 307 , 219-223 (2001).
3. J. Lii, W. Hsu, W. Lee and S.K. Sia, Microfluidics, in Kirk-Othmer Encyclopedia of Chemical
Technology (Wiley, New York, 2006)
4. P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M.R. Tam, and B.H. Weigl, Microfluidic
diagnostic technologies for global public health. Nature 442 , 412-418 (2006)
5. C.D. Chin, V. Linder, and S.K. Sia, Lab-on-a-chip devices for global health: Past studies and
future opportunities. Lab on a Chip 7, 41-57 (2007)
6. P. Yager, G.J. Domingo, and J. Gerdes, Point-of-care diagnostics for global health. Annu. Rev.
Biomed. Eng. 10 , 107-144 (2008)
7. S.K. Sia and L.J. Kricka, Microfluidics and point-of-care testing. Lab Chip 8 , 1982-1983
8. G.M. Whitesides, The origins and the future of microfluidics. Nature 442 , 368-373 (2006)
9. J.B. Angell, S.C. Terry, and P.W. Barth, Silicon Micromechanical Devices. Sci. Am. 248 , 44-55
10. D. Mabey, R.W. Peeling, A. Ustianowski, and M.D. Perkins, Diagnostics for the developing
world. Nat. Rev. Microbiol. 2 231-40 (2004)
11. I.R. Lauks, Microfabricated biosensors and microanalytical systems for blood analysis. Acc.
of Chem. Res. 31 , 317-324 (1998)
12. A.J. Tudos, G.A.J. Besselink, and R.B.M. Schasfoort, Trends in miniaturized total analysis
systems for point-of-care testing in clinical chemistry. Lab Chip 1 , 83-95 (2001)
13. P. Belgrader, S. Young, B. Yuan, M. Primeau, L.A. Christel, F. Pourahmadi, and
M.A. Northrup, A battery-powered notebook thermal cycler for rapid multiplex real-time PCR
analysis. Anal. Chem. 73 286, 391 (2001)
14. C.T. Culbertson, Y. Tugnawat, A.R. Meyer, G.T. Roman, J.M. Ramsey, and S.R. Gonda,
Microchip separations in reduced-gravity and hypergravity environments. Anal. Chem. 77 ,
7933-7940 (2005)
15. A.M. Skelley, J.R. Scherer, A.D. Aubrey, W.H. Grover, R.H.C. Ivester, P. Ehrenfreund,
F.J. Grunthaner, J.L. Bada, and R.A. Mathies, Development and evaluation of a microdevice for
amino acid biomarker detection and analysis on Mars, Proc. Natl. Acad. Sci. 102 , 1041-1046
16. T. Akiyama, S. Gautsch, N.F. de Rooij, U. Staufer, P. Niedermann, L. Howald, D. Muller,
A. Tonin, H.R. Hidber, W.T. Pike, and M.H. Hecht, Atomic force microscope for planetary
applications. Sensor. Actuat. A-Phys. 91 , 321-325 (2001)
17. WHO, The global burden of disease: 2004 update (World Health Organization, Geneva, 2008)
18. D.A. Hall, J. Ptacek, and M. Snyder, Protein microarray technology. Mech. Ageing Dev. 128 ,
161-167 (2007)
Search WWH ::

Custom Search