Biomedical Engineering Reference
In-Depth Information
We presented our approach with a planar robot. Our results indicated robot
rehabilitation may also assist to break abnormal synergy. Future trends for the
rehabilitation with the planar robot are outlined in the last part.
References
Kahn, L. E., Zygman, M. L., Rymer, W. Z. and Reinkensmeyer, D. J., Robot-assisted
reaching exercise promotes arm movement recovery in chronic hemiparetic stroke: a
randomized controlled pilot study, J. Neruoeng. Rehabil. , 3 , 12 (2006).
Marchal-Crespo, L. and Reinkensmeyer, D. J., Review of control strategies for robotic
movement training after neurologic injury, J. Neuroeng. Rehabil. , 6 , 20 (2009).
Krebs, H. I., Hogan, N., Aisen, M. L. and Volpe, B. T., Robot-aided neurorehabilitation, IEEE
Trans. Rehab. Eng. , 6 , 75-87 (1998).
Asada, H. and Youcef-Toumi, K., Analysis and design of a direct-drive arm with a five- bar-
link parallel drive mechanism, Tran.ASMEJ.Dyn.Syst.Meas.Contr. , 106 , pp. 255-230
(1984).
Noritsugu, T. and Tanaka, T., Application of rubber artificial muscle manipulator as a
rehabilitation robot,” IEEE/ASME Trans. Mechatron. , 2 , 259-267 (1997).
Raibert, M. H. and Craig, J. J. Hybrid, position/force control of manipulators, Tr an s . ASME
J. Dyn. Syst. Meas. Contr. , 102 , 126-133 (1981).
Suh, H., Hong, J. H., Oh, S.-R. and Kim, K. B., Fuzzy rule based position/force control of
industrial manipulators, IEEE/RSJ Intl. Workshop Intelligent Robots Syst. , 3 , 1617-1622
(1991).
Burgar, C. G., Lum, P. S., Shor, P. and van der Loos, H. F., Development of robots for
rehabilitation therapy: The Palo Alto VA/Stanford experience. J. Rehabil. Res. Dev. , 37 ,
663-673 (2000).
Cozens, J. A., Robotic assistance of an active upper limb exercise in neurologically impaired
patients, IEEE Trans. Rehab. Eng. , 7 , 254-256 (1999).
Colombo, R., Pisano, F., Micera, S., Mazzone, A., Delconte, C., Carrozza, M. C., Dario, P. and
Minuco, G., Robotic Techniques for upper limb evaluation and rehabilitation of stroke
patients, IEEE Trans. Neural Sys. Rehab. Eng. , 13 (3), 311-324 (2005).
Reinkensmeyer D., Takahashi C. and Timoszyk W., Evaluation of an assistive controller for
reaching following brain injury, Proc. 1 st Joint BMES/EMBS Conf. , p. 631 (1999).
Hesse S, Schulte-Tigges G, Konrad M., Bardeleben A. and Wermer C Robot-assisted arm
trainer for the passive and active practice of bilateral forearm and wrist movements in
hemiparetic subjects, Arch.Phys.Med.Rehabil. , 84 , 915-920 (2003).
Kikuchi T, Fukushima K, Furusho J and Ozawa T., Development of quasi-3DOF upper limb
rehabilitation system using ER brake: PLEMO-P1, J. Phys. Conf. Series. 149 , 1-4 (2009).
Koyanagi K, Imada Y, Furusho J, Ryu U, Inoue A. and Takenaka K., 3-D Rehabilitation robot
system for upper limbs and its force display techniques, ICAT , (2003).
Doornebosch A. J, Cools H. J. M, Slee-Turkenburg M. E. C, van Elk M. G. and Schoone-
Harmsen M., Robot-mediated ACtive Rehabilitation (ACRE2) for the hemiplegic upper
limb after a stroke: A pilot study Technology and Disability , 19 , 199-203 (2007).
Coote S, Stokes E, Murphy B. and Harwin W., The effect of GENTLE robot mediated therapy
on upper extremity dysfunction post stroke, Proc 8 th ICORR , pp. 59-62 (2003).
Sukal T. M, Ellis M. D, and Dewald J. P. A., Dynamic characterization of upper limb
discoordination following hemiparetic stroke, Proc 9 th ICORR ,pp.519-521 (2005).
 
Search WWH ::




Custom Search