Biomedical Engineering Reference
In-Depth Information
60. Balaya, P.,
et al.
(2006). Nano-ionics in the context of lithium
batteries.
J. Power Sources
,
159
(1): pp. 171-178.
61. Meethong, N.,
et al.
(2007). Size-dependent lithium miscibility gap
in nanoscale Li
FePO
.
Electrochem. Solid-State Lett.
,
10
(5): pp.
1
-
x
4
A134-A138.
62. Jiang, C., Hosono, E., and Zhou, H. (2006). Nanomaterials for lithium
ion batteries.
Nano Today
,
1
(4): pp. 28-33.
63. Cao, A.-M.,
)
hollow microspheres from nanorods and their application in
lithium-ion batteries.
et al.
(2005). Self-assembled vanadium pentoxide (V
O
2
5
Angew. Chem. Int. Ed.
,
44
(28): pp. 4391-4395.
64. Hu, J.-S.,
(2004). Interface assembly synthesis of inorganic
composite hollow spheres.
et al.
(28): pp. 9734-9738.
65. Guo, Y.-G., Hu, Y.-S., and Maier, J. (2006). Synthesis of hierarchically
mesoporous anatase spheres and their application in lithium
batteries.
J. Phys. Chem. B
,
108
Chem. Commun.
, (26): pp. 2783-2785.
66. Jiang, L.-Y.,
-based hierarchical nanomicrostructures
facile synthesis and their applications in gas sensors and lithium-ion
batteries.
et al.
(2009). SnO
2
J. Phys. Chem. C
,
113
(32): pp. 14213-14219.
67. Hu, Y.S.,
et al.
(2007). Improved electrode performance of porous
LiFePO
using RuO
2
as an oxidic nanoscale interconnect.
Advanced
4
Materials
,
19
(15): pp. 1963-1966.
68. Zheng, S.-F.,
(2008). Introducing dual functional CNT networks
into CuO nanomicrospheres toward superior electrode materials for
lithium-ion batteries
et al.
.
Chem. Mater.
,
20
(11): pp. 3617-3622.
 
Search WWH ::




Custom Search