Chemistry Reference
In-Depth Information
Alberti S, Demand J, Esser C et al (2002) Ubiquitylation of BAG-1 suggests a novel regula-
tory mechanism during the sorting of chaperone substrates to the proteasome. J Biol Chem
277:45920-45927
Alberti S, Esser C, Hohfeld J (2003) BAG-1-a nucleotide exchange factor of Hsc70 with multiple
cellular functions. Cell Stress Chaperones 8:225-231
Alberti S, Bohse K, Arndt V et al (2004) The cochaperone HspBP1 inhibits the CHIP ubiquitin
ligase and stimulates the maturation of the cystic fibrosis transmembrane conductance regula-
tor. Mol Biol Cell 15:4003-4010
Ali MM, Roe SM, Vaughan CK et al (2006) Crystal structure of an Hsp90-nucleotide-p23/Sba1
closed chaperone complex. Nature 440:1013-1017
Allan RK, Ratajczak T (2011) Versatile TPR domains accommodate different modes of target
protein recognition and function. Cell Stress Chaperones 16:353-367
Amm I, Sommer T, Wolf DH (2014) Protein quality control and elimination of protein waste: the
role of the ubiquitin-proteasome system. Biochim Biophys Acta 1843:182-196
Babbitt SE, Kiss A, Deffenbaugh AE et al (2005) ATP hydrolysis-dependent disassembly of the
26S proteasome is part of the catalytic cycle. Cell 121:553-565
Ballinger CA, Connell P, Wu Y et al (1999) Identification of CHIP, a novel tetratricopeptide repeat-
containing protein that interacts with heat shock proteins and negatively regulates chaperone
functions. Mol Cell Biol 19:4535-4545
Bedford L, Paine S, Sheppard PW et al (2010) Assembly, structure, and function of the 26S protea-
some. Trends Cell Biol 20:391-401
Bercovich B, Stancovski I, Mayer A et al (1997) Ubiquitin-dependent degradation of certain pro-
tein substrates in vitro requires the molecular chaperone Hsc70. J Biol Chem 272:9002-9010
Blatch GL, Lassle M (1999) The tetratricopeptide repeat: a structural motif mediating protein-
protein interactions. Bioessays 21:932-939
Brinker A, Scheufler C, Von Der Mulbe F et al (2002) Ligand discrimination by TPR domains.
Relevance and selectivity of EEVD-recognition in Hsp70 x Hop x Hsp90 complexes. J Biol
Chem 277:19265-19275
Brychzy A, Rein T, Winklhofer KF et al (2003) Cofactor Tpr2 combines two TPR domains and a J
domain to regulate the Hsp70/Hsp90 chaperone system. EMBO J 22:3613-3623
Caplan AJ (2003) What is a co-chaperone? Cell Stress Chaperones 8:105-107
Chang L, Thompson AD, Ung P et al (2010) Mutagenesis reveals the complex relationships
between ATPase rate and the chaperone activities of Escherichia coli heat shock protein 70
(Hsp70/DnaK). J Biol Chem 285:21282-21291
Chapple JP, van der Spuy J, Poopalasundaram S et al (2004) Neuronal DnaJ proteins HSJ1a and
HSJ1b: a role in linking the Hsp70 chaperone machine to the ubiquitin-proteasome system?
Biochem Soc Trans 32:640-642
Cheetham ME, Jackson AP, Anderton BH (1994) Regulation of 70-kDa heat-shock-protein ATPase
activity and substrate binding by human DnaJ-like proteins, HSJ1a and HSJ1b. Eur J Biochem
226:99-107
Chen ZJ, Sun LJ (2009) Nonproteolytic functions of ubiquitin in cell signaling. Mol Cell 33:275-
286
Chen L, Kong X, Fu J et al (2009) CHIP facilitates ubiquitination of inducible nitric oxide synthase
and promotes its proteasomal degradation. Cell Immunol 258:38-43
Chen Z, Barbi J, Bu S et al (2013) The ubiquitin ligase Stub1 negatively modulates regulatory T
cell suppressive activity by promoting degradation of the transcription factor Foxp3. Immunity
39:272-285
Choi YN, Lee SK, Seo TW et al (2014) C-terminus of Hsc70-interacting protein regulates profilin1
and breast cancer cell migration. Biochem Biophys Res Commun 446:1060-1066
Ciechanover A (1998) The ubiquitin-proteasome pathway: on protein death and cell life. EMBO
J 17:7151-7160
Connell P, Ballinger CA, Jiang J et al (2001) The co-chaperone CHIP regulates protein triage deci-
sions mediated by heat-shock proteins. Nat Cell Biol 3:93-96
Search WWH ::




Custom Search