Biology Reference
In-Depth Information
Mercier, J. F., Salahpour, A., Angers, S., Breit, A., & Bouvier, M. (2002). Quantitative assess-
ment of beta 1- and beta 2-adrenergic receptor homo- and heterodimerization by biolumi-
nescence resonance energy transfer. The Journal of Biological Chemistry , 277 ,
44925-44931.
Miggin, S. M., & Kinsella, B. T. (2001). Thromboxane A(2) receptor mediated activation of
the mitogen activated protein kinase cascades in human uterine smooth muscle cells.
Biochimica et Biophysica Acta , 1539 , 147-162.
Milligan, G. (2009). G protein-coupled receptor hetero-dimerization: Contribution to pharma-
cology and function. British Journal of Pharmacology , 158 , 5-14.
Mizuno, N., Suzuki, T., Hirasawa, N., & Nakahata, N. (2012). Hetero-oligomerization be-
tween adenosine A(1) and thromboxane A(2) receptors and cellular signal transduction
on stimulation with high and low concentrations of agonists for both receptors. European
Journal of Pharmacology , 677 , 5-14.
Nakahata, N. (2008). Thromboxane A2: Physiology/pathophysiology, cellular signal trans-
duction and pharmacology. Pharmacology & Therapeutics , 118 , 18-35.
Overton, M. C., & Blumer, K. J. (2000). G-protein-coupled receptors function as oligomers in
vivo. Current Biology , 10 , 341-344.
Panetta, R., & Greenwood, M. T. (2008). Physiological relevance of GPCR oligomerization
and its impact on drug discovery. Drug Discovery Today , 13 , 1059-1066.
Pfleger, K. D., & Eidne, K. A. (2005). Monitoring the formation of dynamic G-protein-coupled
receptor-protein complexes in living cells. The Biochemical Journal , 385 , 625-637.
Pfleger, K. D., & Eidne, K. A. (2006). Illuminating insights into protein-protein interactions
using bioluminescence resonance energy transfer (BRET). Nature Methods , 3 , 165-174.
Ralevic, V., & Burnstock, G. (1998). Receptors for purines and pyrimidines. Pharmacological
Reviews , 50 , 413-492.
Ramsay, D., Kellett, E., McVey, M., Rees, S., & Milligan, G. (2002). Homo- and hetero-
oligomeric interactions between G-protein-coupled receptors in living cells monitored
by two variants of bioluminescence resonance energy transfer (BRET): Hetero-oligomers
between receptor subtypes form more efficiently than between less closely related se-
quences. The Biochemical Journal , 365 , 429-440.
Salim, K., Fenton, T., Bacha, J., Urien-Rodriguez, H., Bonnert, T., Skynner, H. A., et al.
(2002). Oligomerization of G-protein-coupled receptors shown by selective co-immuno-
precipitation. The Journal of Biological Chemistry , 277 , 15482-15485.
Sasaki, M., Sukegawa, J., Miyosawa, K., Yanagisawa, T., Ohkubo, S., & Nakahata, N. (2007).
Low expression of cell-surface thromboxane A2 receptor beta-isoform through the nega-
tive regulation of its membrane traffic by proteasomes. Prostaglandins & Other Lipid
Mediators , 83 , 237-249.
Suzuki, T., Namba, K., Mizuno, N., & Nakata, H. (2013). Hetero-oligomerization and spec-
ificity changes of G protein-coupled purinergic receptors: Novel insight into diversifica-
tion of signal transduction. Methods in Enzymology , 521 , 239-257.
Suzuki, T., Namba, K., Tsuga, H., & Nakata, H. (2006). Regulation of pharmacology by
hetero-oligomerization between A1 adenosine receptor and P2Y2 receptor. Biochemical
and Biophysical Research Communications , 351 , 559-565.
Suzuki, T., Namba, K., Yamagishi, R., Kaneko, H., Haga, T., & Nakata, H. (2009). A highly
conserved tryptophan residue in the fourth transmembrane domain of the A adenosine re-
ceptor is essential for ligand binding but not receptor homodimerization. Journal of Neu-
rochemistry , 110 , 1352-1362.
Search WWH ::




Custom Search