Biomedical Engineering Reference
In-Depth Information
100. He W, Ma Z, Yong T, Teo WE, Ramakrishna S. Fabrication of collagen-coated
biodegradable polymer nanofiber mesh and its potential for endothelial cells growth.
Biomaterials 2005;26:7606-7615.
101. He W, et al. Biodegradable polymer nanofiber mesh to maintain functions of endothelial
cells. Tissue Eng 2006;12:2457-2466.
102. Ma Z, He W, Yong T, Ramakrishna S. Grafting of gelatin on electrospun poly
(caprolactone) nanofibers to improve endothelial cell spreading and proliferation and
to control cell orientation. Tissue Eng 2005;11:1149-1158.
103. Croll TI, O'Connor AJ, Stevens GW, Cooper-White JJ. Controllable surface modifica-
tion of poly(lactic-co-glycolic acid) (PLGA) by hydrolysis or aminolysis I: physical,
chemical, and theoretical aspects. Biomacromolecules 2004;5:463-473.
104. Zhu Y, Leong MF, Ong WF, Chan-Park MB, Chian KS. Esophageal epithelium
regeneration on fibronectin grafted poly( L -lactide-co-caprolactone) (PLLC) nanofiber
scaffold. Biomaterials 2007;28:861-868.
105. Pham QP, Sharma U, Mikos AG. Electrospun poly(epsilon-caprolactone) microfiber and
multilayer nanofiber/microfiber scaffolds: characterization of scaffolds and measure-
ment of cellular infiltration. Biomacromolecules 2006;7:2796-2805.
106. Baker BM, et al. The potential to improve cell infiltration in composite fiber-aligned
electrospun scaffolds by the selective removal of sacrificial fibers. Biomaterials
2008;29:2348-2358.
107. Lowery JL, Datta N, Rutledge GC. Effect of fiber diameter, pore size and seeding method
on growth of human dermal fibroblasts in electrospun poly(epsilon-caprolactone) fibrous
mats. Biomaterials 2010;31:491-504.
108. Phipps MC, Clem WC, Grunda JM, Clines GA, Bellis SL. Increasing the pore sizes of
bone-mimetic electrospun scaffolds comprised of polycaprolactone, collagen I and
hydroxyapatite to enhance cell infiltration. Biomaterials 2012;33:524-534.
109. Stankus JJ, Freytes DO, Badylak SF, Wagner WR. Hybrid nanofibrous scaffolds from
electrospinning of a synthetic biodegradable elastomer and urinary bladder matrix. J
Biomater Sci 2008;19:635.
110. Lee SJ, Yoo JJ, Lim GJ, Atala A, Stitzel J. In vitro evaluation of electrospun nanofiber
scaffolds for vascular graft application. J Biomed Mater Res Part A 2007;83:999-1008.
111. Kidoaki S, Kwon IK, Matsuda T. Mesoscopic spatial designs of nano- and microfiber
meshes for tissue-engineering matrix and scaffold based on newly devised multilayering
and mixing electrospinning techniques. Biomaterials 2005;26:37-46.
112. Baker BM, Nerurkar NL, Burdick JA, Elliott DM, Mauck L. Fabrication and modeling of
dynamic multi-polymer nanofibrous scaffolds. J Biomech Sci 2010;131:1-22.
113. Nisbet DR, Forsythe JS, Shen W, Finkelstein DI, Horne MK. Review paper: a review of
the cellular response on electrospun nanofibers for tissue engineering. J Biomater Appl
2009;24:7-29.
114. Kumbar SG, James R, Nukavarapu SP, Laurencin CT. Electrospun nanofiber scaffolds:
engineering soft tissues. Biomed Mater 2008;3:034002.
115. Dahlin R, Kasper F. Polymeric nanofibers in tissue engineering. Tissue Eng Part B
2011;17:349-364.
116. Casper CL, Yamaguchi N, Kiick KL, Rabolt JF. Functionalizing electrospun fibers with
biologically relevant macromolecules. Biomacromolecules 2007;6:1998-2007.
Search WWH ::




Custom Search