Biomedical Engineering Reference
In-Depth Information
37. Sahithi K, Swetha M, Prabaharan M, et al. Synthesis and characterization of nanoscale-
hydroxyapatite-copper for antimicrobial activity towards bone tissue engineering appli-
cations. J Biomed Nanotechnol 2010;6(4):333-339.
38. Meng Y, Tang CY, Tsui CP, Chen da Z. Fabrication and characterization of needle-
like nano-HA and HA/MWNT composites. J Mater Sci Mater Med 2008;19(1):75-
81.
39. Athanasiou KA, Niederauer GG, Agrawal CM. Sterilization, toxicity, biocompatibility
and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials
1996;17(2):93-102.
40. Wang Y, Shi X, Ren L, et al. Poly(lactide-co-glycolide)(titania composite microsphere-
sintered scaffolds for bone tissue engineering applications. J Biomed Mater Res B Appl
Biomater 2010;93(1):84-92.
41. Jose MV, Thomas V, Johnson KT, et al. Aligned PLGA/HA nanofibrous nanocomposite
scaffolds for bone tissue engineering. Acta Biomater 2009;5(1):305-315.
42. He S, et al. Synthesis of biodegradable poly(propylene fumarate) networks with poly
(propylene fumarate), diacrylate macromers as crosslinking agents and characterization of
their degradation products. Polymer 2001;42(3):1251-1260.
43. Timmer MD, et al. Characterization of the cross-linked structure of fumarate-based
degradable polymer networks. Macromolecules 2002;35(11):4373-4379.
44. Fisher JP, Vehof JW, Dean D, et al. Soft and hard tissue response to photocrosslinked poly
(propylene fumarate) scaffolds in a rabbit model. J Biomed Mater Res 2002;59(3):
547-556.
45. Peter SJ, Miller ST, Zhu G, et al. In vivo degradation of a poly(propylene fumarate)(beta-
tricalcium phosphate injectable composite scaffold. J Biomed Mater Res 1998;41(1):1-7.
46. Lalwani G, Henslee AM, Farshid B, et al. Two-dimensional nanostructure-reinforced
biodegradable polymeric nanocomposites for bone tissue engineering. Biomacromole-
cules 2013; (In Press).
47. Sitharaman B, Shi X, Tran LA, et al. Injectable in situ cross-linkable nanocomposites
of biodegradable polymers and carbon nanostructures for bone tissue engineering.
J Biomater Sci Polym Ed 2007;18(6):655-671.
48. Shi X, Sitharaman B, Pham QP, et al. In vitro cytotoxicity of single-walled carbon
nanotube/biodegradable polymer nanocomposites. J Biomed Mater Res A 2008;86A(3):
813-823.
49. Sitharaman B, Shi X, Walboomers XF, et al. In vivo biocompatibility of ultra-short single-
walled carbon nanotube/biodegradable polymer nanocomposites for bone tissue engineer-
ing. Bone 2008;43(2):362-370.
50. Mistry AS, Mikos AG, Jansen JA. Degradation and biocompatibility of a poly(propylene
fumarate)-based/alumoxane nanocomposite for bone tissue engineering. J Biomed Mater
Res A 2007;83(4):940-953.
51. Cunniff PM, et al. Mechanical and thermal properties of dragline silk from the spider
Nephila clavipes. Polym Adv Technol 1994;5(8):401-410.
52. Dal Pra I, Freddi G, Minic J, et al. De novo engineering of reticular connective tissue
in vivo by silk fibroin nonwoven materials. Biomaterials 2005;26(14):1987-1999.
53. Horan RL, Antle K, Collette AL, et al. In vitro degradation of silk fibroin. Biomaterials
2005;26(17):3385-3393.
Search WWH ::




Custom Search