Biomedical Engineering Reference
In-Depth Information
94. Jayasuriya AC, Bhat A. Fabrication and characterization of novel hybrid organic/
inorganic microparticles to apply in bone regeneration. J Biomed Mater Res A
2010;93A(4):1280-1288.
95. Lee CS, Moyer HR, Gittens RA, Williams JK, Boskey AL, Boyan BD, Schwartz Z.
Regulating in vivo calcification of alginate microbeads. Biomaterials 2010;31(18):
4926-4934.
96. Ahmed TAE, Dare EV, Hincke M. Fibrin: a versatile scaffold for tissue engineering
applications. Tissue Eng Part B Rev 2008;14(2):199-215.
97. Lemperle G, Morhenn V, Pestonjamasp V, Gallo R. Migration studies and histology of
injectable microspheres of different sizes in mice. Plast Reconstr Surg 2004;113
(5):1380-1390.
98. Cho EC, Kim J-W, Fernandez-Nieves A, Weitz DA. Highly responsive hydrogel
scaffolds formed by three-dimensional organization of microgel nanoparticles. Nano
Lett 2007;8(1):168-172.
99. Borden M, Attawia M, Khan Y, Laurencin CT. Tissue engineered microsphere-
based matrices for bone repair: design and evaluation. Biomaterials 2002;23(2):
551-559.
100. Abdel-Fattah, WI, Jiang T, El-Bassyouni GE-T, Laurencin CT. Synthesis, characteriza-
tion of chitosans and fabrication of sintered chitosan microsphere matrices for bone
tissue engineering. Acta Biomater 2007;3(4):503-514.
101. Borden M, El-Amin SF, Attawia M, Laurencin CT. Structural and human cellular
assessment of a novel microsphere-based tissue engineered scaffold for bone repair.
Biomaterials 2003;24(4):597-609.
102. Yu X, Botchwey EA, Levine EM, Pollack SR, Laurencin CT. Bioreactor-based bone
tissue engineering: the influence of dynamic flow on osteoblast phenotypic expression
and matrix mineralization. Proc Natl Acad Sci USA 2004;101(31):11203-11208.
103. Borden M, Attawia M, Khan Y, El-Amin SF, Laurencin CT. Tissue-engineered bone
formation in vivo using a novel sintered polymeric microsphere matrix. J Bone Joint Surg
Br 2004;86-B(8):1200-1208.
104. Van Tomme, SR, Van Steenbergen MJ, De Smedt SC, van Nostrum CF, Hennink WE.
Self-gelling hydrogels based on oppositely charged dextran microspheres. Biomaterials
2005;26(14):2129-2135.
105. Wang H, Hansen MB, Lowik DWPM, van Hest JCM, Li Y, Jansen JA, Leeuwenburgh
SCG. Oppositely charged gelatin nanospheres as building blocks for injectable and
biodegradable gels. Adv Mater 2011;23(12):H119-H124.
106. Wang Q, Jamal S, Detamore MS, Berkland C. PLGA-chitosan/PLGA-alginate nano-
particle blends as biodegradable colloidal gels for seeding human umbilical cord
mesenchymal stem cells. J Biomed Mater Res A 2011;96A(3):520-527.
107. Van Tomme, SR, Mens A, van Nostrum CF, Hennink WE. Macroscopic hydrogels by
self-assembly of oligolactate-grafted dextran microspheres. Biomacromolecules 2007;9
(1):158-165.
108. Wang Q, Wang J, Lu Q, Detamore MS, Berkland C. Injectable PLGA based colloidal
gels for zero-order dexamethasone release in cranial defects. Biomaterials 2010;31
(18):4980-4986.
109. Bishop KJM, Wilmer CE, Soh S, Grzybowski BA. Nanoscale forces and their uses in
self-assembly. Small 2009;5(14):1600-1630.
Search WWH ::




Custom Search