Digital Signal Processing Reference
In-Depth Information
However, the sum of ( 2.227 ) does not converge
1
1
k !1;
(2.228)
0
and consequently, the mean value of the random variable X does not exist.
If we consider an arbitrary function of x i , g ( x i ), instead of x i , the expression
( 2.214 ) becomes:
¼ X
N
N 1 g ð x 1 Þþþ N N g ð x n Þ
M
N i
M gðx i Þ:
m empg ¼
(2.229)
1
For a high M value ( M >>
1), the expression ( 2.229 ) becomes the expected value
of g ( X ):
EfgðXÞg ¼ X
N
gðx i ÞPfX ¼ x i g:
(2.230)
1
If we consider that the random variable g { X } is a new variable Y , and y i ¼ g ( x i ),
then, according to ( 2.220 ), we have:
EfgðxÞg ¼ EfYg¼ X
i
y i PfY ¼ y i g:
(2.231)
Generally, the number of values of the randomvariables X and Y may be different.
The expression in ( 2.231 ) is an alternative relation used to find the expected value of
the function of the variable X , g ( X ). Note that in ( 2.231 ), we have to find the values y i
and the probabilities P { Y ¼ y i }.
Example 2.7.5 Consider the random variable X with values x 1 ¼ 1, x 2 ¼ 1,
x 3 ¼ 2, x 4 ¼ 2. The corresponding probabilities are: P { x i } ¼ 1/4, for i ¼ 1,
,4.
...
Find the expected value of X 2 .
Solution Using ( 2.230 ), we have:
X
4
EfgðXÞg ¼ EfX 2
gðx i ÞPfX ¼ x i g;
1
2
4 þ 1 2
2
4 þ 2 2
¼ð 1 Þ
1
=
1
=
4 þð 2 Þ
1
=
1
=
4 ¼ 5
:
(2.232)
=
2
In order to use ( 2.231 ), we define the random variable Y ¼ X 2 , and find the
values x i 2 , i ¼ 1,
,4:
...
x 1 ¼ x 2 ¼ 1
x 3 ¼ x 4 ¼ 4
:
(2.233)
;
Search WWH ::




Custom Search