Digital Signal Processing Reference
In-Depth Information
f X ðxÞ d x ¼ f Y ðyÞ d y:
(2.136)
From here, we can write:
f X ðxÞ
d y=
f Y ðyÞ ¼
d x :
(2.137)
The derivation d y /d x can be positive as well as negative. However, the density
function can be only positive. To solve this problem, the absolute value of the
derivative d y /d x must be used in ( 2.137 ), as demonstrated in the following relation:
f X ðxÞ
d y=
f Y ðyÞ ¼
j :
(2.138)
j
d x
Note that the left side of ( 2.138 ) is a function of y , while the right side is a
function of x . To overcome this problem, we solve ( 2.132 ) to obtain:
x ¼ g 1
ðyÞ;
(2.139)
in the final expression for the desired density function. This gives us:
x¼g 1 ðyÞ :
f X ðxÞ
d y=
f Y ðyÞ ¼
(2.140)
j
d x
j
The desired density f Y ( y ) is equal to zero for values of y where for y there is no
solution ( 2.132 ).
Example 2.6.1 Show that the linear transformation of the uniform random variable
results in a uniform random variable.
Solution Let the input variable X be in the interval [ x 1 , x 2 ] with the corresponding
density, as shown in Fig. 2.31 .
8
<
1
x 2 x 1
x 1 xx 2 ;
for
f X ðxÞ ¼
(2.141)
:
0
otherwise
A linear transformation is given as:
y ¼ ax þ b;
(2.142)
where a and b are constants.
From ( 2.142 ), we obtain:
x ¼ ðybÞ=a
(2.143)
 
Search WWH ::




Custom Search