Digital Signal Processing Reference
In-Depth Information
If ( 6.152 ) is satisfied, we can write
T= 2
ð
1
1
1
T
lim
T!1
xðtÞxðt þ tÞ d t ¼
x 1 x 2 f X 1 X 2 ðx 1 ; x 2 ; d x 1 d x 2 ;
(6.153)
1
1
T= 2
where X 1 and X 2 are random variables of the process X ( t ) in time instants t and t + t ,
respectively.
Example 6.7.2 Determine whether the process
XðtÞ¼Y cos ðo 0 t þ yÞ
(6.154)
is a mean and autocorrelation ergodic, if Y is uniform over [0, 1], and if o 0 and y are
constants.
Solution The mean value is:
ð
1
EXðtfg¼
y cos ðo 0 t þ yÞf Y ðyÞ d y ¼ cos ðo 0 t þ yÞ=
2
:
(6.155)
0
The mean value is not a constant and thus the process is not a first-order
stationary and consequently, it is not a mean ergodic.
The autocorrelation function is:
EXðtÞXðt þ tÞ
f
g ¼ EY cos ðo 0 t þ yÞY cos ðo 0 ðt þ tÞþyÞ
f
g
¼ EfY 2
g cos o 0 t þ cos ð 2 o 0 t þ o 0 t þ 2
½
=
2
1
6 cos o 0 t þ cos ð 2 o 0 t þ o 0 t þ 2
¼
½
:
(6.156)
From ( 6.156 ), the autocorrelation function is a function of time t and thus cannot
be equal to a time-averaged autocorrelation function which does not depend on
time t . Therefore, the process is not autocorrelation ergodic.
Similarly, for mutually ergodic processes X ( t ) and Y ( t ), we can make a time and a
statistical cross-correlation function equal as:
t
XðtÞYðt þ tÞ¼XðtÞYðt þ tÞ
¼ Ð 1
1
Ð 1
T= 2
Ð
xðtÞyðt þ tÞ d t :
1
T
x 1 y 2 f X 1 Y 2 ðx 1 ; y 2 ; d x 1 d y 2 ¼ lim
T!1
1
T=
2
(6.157)
Search WWH ::




Custom Search