Digital Signal Processing Reference
In-Depth Information
P.2 In general, a cross-correlation function is neither even nor odd . The following
relation holds:
R XY ðtÞ ¼ R YX ðtÞ:
(6.113)
From the definition of a cross-correlation function ( 6.94 )-( 6.95 ), we write
R XY ðtÞ ¼ E XðtÞYðttÞ
g :
f
(6.114)
Introducing
t 0 ¼ tt;
(6.115)
into ( 6.114 ), we can write:
R XY ðtÞ ¼ E Yðt 0 ÞXðt 0 þ tÞ
f
g ¼ R YX ðtÞ:
(6.116)
P.3 This property establishes the upper limit for a cross correlation function as a
geometric mean of the corresponding autocorrelation functions at the origin:
j
p
j
R XY ðtÞ
R XX ð 0 ÞR YY ð 0 Þ
:
(6.117)
For any two random variables, we can write:
2
EfX 2
gEfY 2
½
EfXYg
g:
(6.118)
Then we have:
ðtÞ E Y 2
2
E X 2
½
E XðtÞYðt þ tÞ
f
g
ðt þ tÞ
(6.119)
resulting in the desired result ( 6.117 ).
P.4 This property establishes another upper limit for a cross-correlation function as
an arithmetic mean of the corresponding autocorrelation functions in the origin.
This is a stronger limit than that of ( 6.117 ) because a geometric mean of two
positive numbers cannot exceed an arithmetic mean of the same numbers:
1
2 R XX ð 0 ÞþR YY ð 0 Þ
j
R XY ðtÞ
j
½
:
(6.120)
To establish this property, we write:
2
¼ X 2
ðtÞþY 2
½
XðtÞYðt þ tÞ
ðtÞ 2 XðtÞYðt þ tÞ 0
:
(6.121)
Search WWH ::




Custom Search