Digital Signal Processing Reference
In-Depth Information
5.6.3 Binomial Distribution and Density
From ( 5.108 ) the binomial distribution is given as:
p k q nk uðx kÞ¼ X
F X ðxÞ¼ X
n
n
n
k
P X ðk ; nÞuðx kÞ:
(5.110)
0
0
The probabilities P X ( k ; n ) are called the probability mass function , as indicated
in Chap. 2 .
Keeping in mind that a binomial variable is a discrete variable, its corresponding
density function is:
p k q nk dðx kÞ¼ X
f X ðxÞ¼ X
n
n
n
k
P X ðk; nÞdðx kÞ:
(5.111)
0
0
The name “binomial” comes up from the probability ( 5.109 ) which itself
represents the n th degree of the Newton binomial:
¼ X
n
n
C n p k q nk
ðp þ qÞ
:
(5.112)
0
Taking into account ( 5.101 ), and using ( 5.109 ) from ( 5.112 ), we arrive at:
¼ 1 ¼ X
¼ X
n
n
1 n
C n p k q nk
P X ðk; nÞ:
(5.113)
0
0
The expression ( 5.113 ) proves that the binomial PDF satisfies the condition in
( 2.83 ).
Additionally, the expression ( 5.112 ) can be useful in calculating the characteris-
tic function, as shown below.
5.6.4 Characteristic Functions and Moments
The characteristic function of a binomial variable is:
f X ðoÞ¼Ef e joX
g
¼ X
e jok P X ðk ; nÞ¼ X
¼ X
n
n
n
k
e jok C n p k q nk
C n ðp e jo
q nk
Þ
:
(5.114)
0
0
0
Search WWH ::




Custom Search