Digital Signal Processing Reference
In-Depth Information
Similarly, from ( 4.23 ) and ( 4.25 ), it follows:
ð
:
u
2
p
x m
p s
e u 2 d u ¼ erf ðuÞ¼ erf
p
(4.28)
0
Finally, from ( 4.26 )to( 4.28 ), we have:
1
2
x m
p s
F X ðxÞ¼
1 þ erf
:
(4.29)
Using ( 4.29 ), the probability P { X x 1 } can be written as:
1
2
x 1 m
p s
PfX x 1 g¼F X ðx 1 Þ¼
1 þ erf
:
(4.30)
Similarly, from ( 2.46 ) and ( 4.29 ), we have:
Pfx 1 X x 2 g¼F X ðx 2 ÞF X ðx 1 Þ
1
2
x 2 m
1
2
x 1 m
p s
¼
1 þ erf
p s
1 þ erf
erf
1
2
x 2 m
p s
x 1 m
p s
¼
erf
:
(4.31)
We often need to find the probability that the normal variable is around its
mean value in the interval [ m ks , m+ks ], where k is any real number. Using
( 4.24d ) and ( 4.31 ), where,
x 2 ¼ m þ ks;
x 1 ¼ m ks;
we find the desired probability as:
1
2
m þ ks m
p s
m ks m
p s
Pfm ks X m þ ksg¼
erf
erf
:
k
2
¼ erf
p
(4.33)
Example 4.2.1 Given a normal random variable with a mean value of 5 and the
mean squared value of 89, find the probability that the random variable is less than
10 and that is in the interval [ 2, 8] calculating the erf function using the MATLAB
file erf( x ) .
Search WWH ::




Custom Search