Digital Signal Processing Reference
In-Depth Information
This result shows us that if the random variables are independent, we
can obtain the joint density from the marginal densities.
A.3.3. Let us suppose that
Pfx 1 < X 1 x 1 þ d x 1 ; x 2 < X 2 x 2 þ d x 2 g¼Pfy 1 < Y 1
y 1 þ d y 1 ; y 2 < Y 2 y 2 þ d y 2 g:
(3.350)
From ( 3.350 ), we have:
f X 1 X 2 ðx 1 ; x 2 Þ d x 1 d x 2 ¼ f Y 1 Y 2 ðy 1 ; y 2 Þ d y 1 d y 2 :
(3.351)
Knowing that the random variables X 1 and X 2 are independent, we get:
f X 1 ðx 1 Þf X 2 ðx 2 Þ d x 1 d x 2 ¼ f Y 1 Y 2 ðy 1 ; y 2 Þ d y 1 d y 2 :
(3.352)
The joint distribution of Y 1 and Y 2 is:
y 1
ð
y 2
ð
gðx 1 Þ
ð
gðx 2 Þ
ð
F Y 1 Y 2 ðy 1 ;y 2 Þ¼
f Y 1 Y 2 ðy 1 ;y 2 Þ d y 1 d y 2 ¼
f X 1 X 2 ðx 1 ;x 2 Þ d x 1 d x 2
1
1
1
1
gðx 1 Þ
ð
gðx 2 Þ
ð
y 1
ð
y 2
ð
¼
f X 1 ðx 1 Þf X 2 ðx 2 Þ d x 1 d x 2 ¼
f X 1 ðx 1 Þ d x 1
f X 2 ðx 2 Þ d x 2 ¼F Y 1 ðy 1 ÞF Y 2 ðy 2 Þ:
1
1
1
1
(3.353)
The joint distribution function is equal to the product of the marginal
distributions. As a consequence, the variables Y 1 and Y 2 are independent.
A.3.4. The conditional distribution can be rewritten as:
P f X 1 x 1 ; X 2 x 2 g
PfX 2 x 2 g
F X 1 X 2 ð x 1 ; x 2 Þ
F X 2 ðx 2 Þ
F X 1 ðx 1 jX 2 x 2 Þ¼
¼
:
(3.354)
If the random variables X 1 and X 2 are independent, then
F X 1 X 2 ðx 1 ; x 2 Þ¼F X 1 ðx 1 ÞF X 2 ðx 2 Þ;
(3.355)
resulting in:
F X 1 ð x 1 Þ F X 2 ð x 2 Þ
F X 2 ðx 2 Þ
F X 1 ðx 1 jX 2 x 2 Þ¼
¼ F X 1 ðx 1 Þ:
(3.356)
If the random variables X 1 and X 2 are independent, then the conditional
distribution of variable X 1 , given the other variable X 2 , is equal to the
marginal distribution of X 1 .
Search WWH ::




Custom Search