Digital Signal Processing Reference
In-Depth Information
The joint density ( 3.294 ) can be rewritten as:
f Y 1 Y 2 ðy 1 ; y 2 Þ¼f Y 1 ðy 1 Þf Y 2 ðy 2 Þ;
(3.295)
where
f Y 1 ðy 1 Þ¼y 1 e y 1
;
y 1 0
;
for
f Y 2 ðy 2 Þ¼ 1
;
for
0 y 2 1
:
(3.296)
Therefore, from ( 3.295 ) it follows that the random variables Y 1 and Y 2 are also
independent.
Exercise 3.13 The random variables X 1 and X 2 are independent and have the
following density functions:
e x 1
e x 2
for
x 1 >
0
for
x 2 >
0
f X 1 ðx 1 Þ¼
otherwise ;
f X 2 ðx 2 Þ¼
:
(3.297)
0
0
otherwise
Find the PDF of the random variable X ,if
X 1
X 2 :
X ¼
(3.298)
Solution We have two input random variables and one output variable. In order to
apply the expression ( 3.159 ) we must first introduce the auxiliary variable Y ,
Y ¼ X 1 :
(3.299)
Now we have the transformation defined in the following two equations:
x 1
x 2 ;
y ¼ x 1 :
x ¼
(3.300)
This system of equations ( 3.300 ) has one solution:
x 11 ¼ y;
and
x 21 ¼ y=x:
(3.301)
The Jacobian of the transformation ( 3.300 ) is:
¼
1
x 2
x 1
x 2
10
x 2
y :
x 1
x 2 ¼
y
J ¼
=x 2 ¼
(3.302)
y 2
Search WWH ::




Custom Search