Digital Signal Processing Reference
In-Depth Information
Using ( 2.387 ), we get:
1
1
2 p
f X 2 ðoÞ e joðyx 1 Þ d o ¼ f X 2 ðy x 1 Þ;
(3.214)
1
From ( 3.213 ) and ( 3.214 ), we arrive at:
1
f Y ðyÞ¼
f X 1 ðx 1 Þf X 2 ðy x 1 Þ d x 1 :
(3.215)
1
This expression can be rewritten as:
1
f Y ðyÞ¼
f X 2 ðx 2 Þ f X 1 ðy x 2 Þ d x 2 :
(3.216)
1
The expressions ( 3.215 ) and ( 3.216 ) present the convolution of the PDFs of
random variables X 1 and X 2 , and can be presented as:
f Y ðyÞ¼f X 1 ðx 1 Þf X 2 ðx 2 Þ¼f X 2 ðx 2 Þf X 1 ðx 1 Þ;
(3.217)
where * stands for the convolution operation.
This result can be generalized for the sum of N independent variables X i ,
Y ¼ X
N
X i ;
(3.218)
1
f Y ðyÞ¼f X 1 ðx 1 Þf X 2 ðx 2 Þf X N ðx N Þ:
(3.219)
Example 3.5.3 Two resistors R 1 and R 2 are in a serial connection (Fig. 3.16a ). Each
of them randomly changes its value in a uniform way for 10% about its nominal
value of 1,000
. Find the PDF of the equivalent resistor R ,
O
R ¼ R 1 þ R 2
(3.220)
if both resistors have uniform density in the interval [900, 1,100]
.
O
Solution Denote the equivalent resistor R as a random variable X and the particular
resistors R 1 and R 2 , as the random variables X 1 and X 2 . Then,
X ¼ X 1 þ X 2 :
(3.221)
Search WWH ::




Custom Search