Digital Signal Processing Reference
In-Depth Information
Fig. 2.53 Illustration of Chebyshev theorem (first form)
We introduce the zero mean variable shown in Fig. 2.53b (see Sect. 2.8.2.3 )
Y ¼ X m X ;
(2.433)
resulting in:
ð
1
e
s 2
y 2 f Y ðyÞ d
y 2 f Y ðyÞ d y:
X
(2.434)
1
e
Replacing y by value ðeÞ in ( 2.434 ) makes this inequality even stronger:
2
3
ð
e
1
e 2 f Y ðyÞ d y; ¼ e 2 ð
e
1
4
5 ;
s X
e 2 f Y ðyÞ d y þ
f Y ðyÞ d y þ
f Y ðyÞ d y
1
e
1
e
¼ e 2 PfjYjeg¼e 2 PfjX m X jeg:
(2.435)
Finally, from ( 2.435 ), we have:
PfjX m X jegs 2
X =e 2
:
(2.436)
2.8.5.2 Second Form of Inequality
Replacing e ¼ ks X
in ( 2.430 ), we can obtain the alternative form of Chebyshev
inequality
=k 2
PfjX m X jks X g 1
:
(2.437)
The inequality ( 2.437 ) imposes a limit of 1/ k 2 , where k is a constant, to the
probability at the left side of ( 2.437 ).
Search WWH ::




Custom Search