Geoscience Reference
In-Depth Information
McDowell, A., A. Engel, J.T. Massey, and K. Maurer
Plan and Operation of the Second National Health and
Nutrition Examination Survey, 1976-1980, Vital and Health Stat. Rep., Series 1(15), National Center
for Health Statistics, 1981.
McGuiness, R.A., Redesign of the sample for the Current Population Survey,
Employment Earnings
, 41, 7-10,
McGwire, K.C., and P. Fisher, Spatially variable thematic accuracy: Beyond the confusion matrix, in
Uncertainty in Ecology: Implications for Remote Sensing and GIS Applications,
Hunsaker, C.T., M.F.
Goodchild, M.A. Friedl, and T.J. Case, Eds., Springer, New York, 2001.
Muller, S.V., D.A. Walker, F.E. Nelson, N.A. Auerbach, J.G. Bockheim, S. Guyer, and D. Sherba, Accuracy
assessment of a land-cover map of the Kuparuk River Basin, Alaska: considerations for remote regions,
, 64, 619-628, 1998.
Nusser, S.M. and J.J Goebel, The National Resources Inventory: a long-term multi-resource monitoring
Photogram. Eng. Remote Sensing
, 4, 181-204, 1997.
Nusser, S.M. and E.E. Klaas, Survey methods for assessing land cover map accuracy,
, Environ. Ecol. Stat.
Environ. Ecol. Stat.
2003, 10, 309-331.
Olsen, A.R., J. Sedransk, D. Edwards, C.A. Gotway, W. Liggett, S. Rathbun, K.H. Reckhow, and L.J. Young,
Statistical issues for monitoring ecological and natural resources in the United States,
Environ. Monit.
, 54, 1-45, 1999.
Peterson, S.A., N.S. Urquhart, and E.B. Welch, Sample representativeness: a must for reliable regional lake
condition estimates,
, 33, 1559-1565, 1999.
Pugh, S.A. and R.G. Congalton, Applying spatial autocorrelation analysis to evaluate error in New England
forest-cover-type maps derived from Landsat Thematic Mapper data,
Environ. Sci. Technol.
Photogram. Eng. Remote Sens.
67, 613-620, 2001.
Royall, R.M. and K.R. Eberhardt, Variance estimates for the ratio estimator,
C (37), 43-52, 1975.
Sarndal, C.E., B. Swensson, and J. Wretman,
Model-Assisted Survey Sampling
, Springer-Verlag, New York,
Scepan, J., Thematic validation of high-resolution global land-cover data sets
, Photogram. Eng. Remote Sens.
65, 1051-1060, 1999.
Schreuder, H.T. and T.G. Gregoire, For what applications can probability and non-probability sampling be
, 66, 281-291, 2001.
Stehman, S.V., Basic probability sampling designs for thematic map accuracy assessment,
Environ. Monit. Assess.
Int. J. Remote Sens.
20, 2423-2441, 1999.
Stehman, S.V., Comparison of systematic and random sampling for estimating the accuracy of maps generated
from remotely sensed data,
, 58, 1343-1350, 1992.
Stehman, S.V., Estimating standard errors of accuracy assessment statistics under cluster sampling,
Photogram. Eng. Remote Sens.
., 60, 258-269, 1997.
Stehman, S.V., Statistical rigor and practical utility in thematic map accuracy assessment,
Sens. Environ
Photogram. Eng.
, 67, 727-734, 2001.
Stehman, S.V. and R.L. Czaplewski, Design and analysis for thematic map accuracy assessment: fundamental
Remote Sens.
., 64, 331-344, 1998.
Stehman, S.V., R.L. Czaplewski, S.M. Nusser, L.Yang, and Z. Zhu, Combining accuracy assessment of land-
cover maps with environmental monitoring programs,
Remote Sens. Environ
, 64, 115-126, 2000a.
Stehman, S.V., J.D. Wickham, L. Yang, and J.H. Smith, Accuracy of the national land-cover dataset (NLCD)
for the eastern United States: statistical methodology and regional results,
Environ. Monit. Assess.
Remote Sens. Environ
., 86,
500-516, 2003.
Stehman, S.V., J.D. Wickham, L. Yang, and J.H. Smith, Assessing the accuracy of large-area land cover maps:
Experiences from the Multi-resolution Land-Cover Characteristics (MRLC) project, in
Accuracy 2000:
Proceedings of the 4th International Symposium on Spatial Accuracy Assessment in Natural Resources
and Environmental Sciences, Heuvelink, G.B.M. and M.J.P.M. Lemmens, Eds., Delft University Press,
The Netherlands, 2000b, pp. 601-608.
USFS (U.S. Forest Service), Forest Service Resource Inventories: An Overview, USGPO 1992-341-350/60861,
U.S. Department of Agriculture, Forest Service, Forest Inventory, Economics, and Recreation
Research, Washington, DC, 1992.
Van Deusen, P.C., Unbiased estimates of class proportions from thematic maps,
Photogram Eng. Remote Sens.
62, 409-412, 1996.
Search WWH ::

Custom Search