Digital Signal Processing Reference
In-Depth Information
26 Digital Filters and SignalProcessing
Maximum Passband Ripple A p
0.1 [dB]
Minimum Stopband Loss A a
40 [dB]
Lower Stopband-Edge Normalized Frequency ω a 1
0.31 π [Rad]
Lower Passband-Edge Normalized Frequency ω p 1
0.33 π [Rad]
Upper Passband-Edge Normalized Frequency ω p 2
0.60 π [Rad]
Upper Stopband-Edge Normalized Frequency ω a 2
0.61 π [Rad]
Normalized Sampling Period T
1 [s]
Lowpass Filter Interpolation Factor M l p
6
Highpass Filter Interpolation Factor M h p
5
TABLE3. DesignSpecificationsfor BandpassFRMIIR DigitalFilter
v min
v max
K
w
c 1
c 2
L f
L h
−5
700
0.4
2
2
5
10
10
TABLE4. PSODesignParametersfor BandpassFRMIIR DigitalFilter
L 0
l 0
f 0
L 1
l 1
f 1
11
3
10
12
3
7
TABLE5. CSD Parametersfor BandpassFRMIIR DigitalFilter
10. Application examples
10.1. Bandpass FRM IIR digital filter design example
Consider the design of a bandpass FRM IIR digital filter satisfying the magnitude response design
specifications given in Table 3 over the CSD multiplier coefficient space.
The parameters for the PSO of bandpass FRM IIR digital filter is shown in Table 4 and the CSD
parameters are presented in Table 5 .
Given the design specification in Table 3 , The order of the digital allpass networks G 0 l p ( z ) , G 1 l p ( z ) ,
G 0 h p ( z ) and G 1 h p ( z ) are found to be 3 , 4 , 3 and 4 , respectively. In addition, the digital masking subfilters
F 0 l p ( z ) , F 1 l p ( z ) , F 0 h p ( z ) and F 1 h p ( z ) have the same length as the previous example, i.e. 24 , 42 , 25 and
35 respectively, resulting in N = 140 . In this example a set of fifteen CSD LUTs are required, fourteen
LUTs for the multiplier coefficients m C 0,1 , m C 0,2 , m C 0,3 , m L 0,2 , m L 0,3 , m C 1,1 , m L 1,1 , m C 1,2 and m L 1,2
constituent in the digital allpass networks G 0 l p ( z ) , G 1 l p ( z ) , G 0 h p ( z ) and G 1 h p ( z ) , and one template
LUT for all the multiplier coefficients constituent in the masking digital subfilters F 0 l p ( z ) , F 1 l p ( z ) ,
F 0 h p ( z ) and F 1 h p ( z ) .
Finally, by using Parks McClellan approach, the subfilters F 0 l p ( z ) , F 1 l p ( z ) , F 0 h p ( z ) and F 1 h p ( z ) can be
designed. Also, by using the EMQF technique, the digital allpass networks G 0 l p ( z ) , G 1 l p ( z ) , G 0 h p ( z )
and G 1 h p ( z ) can be designed. Consequently, the magnitude and group delay frequency responses of the
overall infinite-precision bandpass FRM IIR digital filter H ( z ) is obtained as shown in Figs. 13 and 14 .
Search WWH ::




Custom Search