Biology Reference
In-Depth Information
Perona JJ, Tsu CA, Craik CS, Fletterick RJ (1997) Crystal structure of an ecotin-collagenase
complex suggests a model for recognition and cleavage of the collagen triple helix. Biochem-
istry 36:5381-5392
Perumal S, Antipova O, Orgel JP (2008) Collagen fibril architecture, domain organization, and
triple-helical conformation govern its proteolysis. Proc Natl Acad Sci USA 105:2824-2829
Ramachandran GN, Kartha G (1955) Structure of collagen. Nature 176:593-595
Reinemer P, Grams F, Huber R, Kleine T, Schnierer S, Piper M, Tschesche H, Bode W (1994)
Structural implications for the role of the N terminus in the 'superactivation' of collagenases. A
crystallographic study. FEBS Lett 338:227-233
Rich A, Crick FH (1961) The molecular structure of collagen. J Mol Biol 3:483-506
Sabeh F, Ota I, Holmbeck K, Birkedal-Hansen H, Soloway P, Balbin M, L´pez-Ot´n C, Shapiro S,
Inada M, Krane S, Allen E, Chung D, Weiss SJ (2004) Tumor cell traffic through the
extracellular matrix is controlled by the membrane-anchored collagenase MT1-MMP. J Cell
Biol 167:769-781
Saffarian S, Collier IE, Marmer BL, Elson EL, Goldberg G (2004) Interstitial collagenase is a
Brownian ratchet driven by proteolysis of collagen. Science 306:108-111
Saftig P, Hunziker E, Wehmeyer O, Jones S, Boyde A, Rommerskirch W, Moritz JD, Schu P, von
Figura K (1998) Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-
deficient mice. Proc Natl Acad Sci USA 95:13453-13458
Salsas-Escat R, Nerenberg PS, Stultz CM (2010) Cleavage Site Specificity and Conformational
Selection in Type I Collagen Degradation. Biochemistry 49:4147-4158
Sato H, Takino T, Okada Y, Cao J, Shinagawa A, Yamamoto E, Seiki M (1994) A matrix
metalloproteinase expressed on the surface of invasive tumour cells [see comments]. Nature
370:61-65
Sato H, Kinoshita T, Takino T, Nakayama K, Seiki M (1996) Activation of a recombinant
membrane type 1-matrix metalloproteinase (MT1-MMP) by furin and its interaction with
tissue inhibitor of metalloproteinases (TIMP)-2. FEBS Lett 393:101-104
Shipley JM, Doyle GA, Fliszar CJ, Ye QZ, Johnson LL, Shapiro SD, Welgus HG, Senior RM
(1996) The structural basis for the elastolytic activity of the 92-kDa and 72-kDa gelatinases.
Role of the fibronectin type II-like repeats. J Biol Chem 271:4335-4341
Spurlino JC, Smallwood AM, Carlton DD, Banks TM, Vavra KJ, Johnson JS, Cook ER, Falvo J,
Wahl RC, Pulvino TA et al (1994) 1.56 A structure of mature truncated human fibroblast
collagenase. Proteins 19:98-109
Steffensen B, Wallon UM, Overall CM (1995) Extracellular matrix binding properties of recom-
binant fibronectin type II-like modules of human 72-kDa gelatinase/type IV collagenase. High
affinity binding to native type I collagen but not native type IV collagen. J Biol Chem
270:11555-11566
Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev
Cell Dev Biol 17:463-516
Stricker TP, Dumin JA, Dickeson SK, Chung L, Nagase H, Parks WC, Santoro SA (2001)
Structural analysis of the alpha(2) integrin I domain/procollagenase-1 (matrix metalloprotei-
nase-1) interaction. J Biol Chem 276:29375-29381
Stultz CM (2002) Localized unfolding of collagen explains collagenase cleavage near imino-poor
sites. J Mol Biol 319:997-1003
Suzuki K, Enghild JJ, Morodomi T, Salvesen G, Nagase H (1990) Mechanisms of activation of tissue
procollagenase by matrix metalloproteinase 3 (stromelysin). Biochemistry 29:10261-10270
Sweeney SM, Orgel JP, Fertala A, McAuliffe JD, Turner KR, Di Lullo GA, Chen S, Antipova O,
Perumal S, Ala-Kokko L, Forlino A, Cabral WA, Barnes AM, Marini JC, San Antonio JD
(2008) Candidate cell and matrix interaction domains on the collagen fibril, the predominant
protein of vertebrates. J Biol Chem 283:21187-21197
Toyoshima T, Matsushita O, Minami J, Nishi N, Okabe A, Itano T (2001) Collagen-binding
domain of a Clostridium histolyticum collagenase exhibits a broad substrate spectrum both
in vitro and in vivo. Connect Tissue Res 42:281-290
Search WWH ::




Custom Search