Biology Reference
In-Depth Information
Mitchell PG, Magna HA, Reeves LM, Lopresti-Morrow LL, Yocum SA, Rosner PJ,
Geoghegan KF, Hambor JE (1996) Cloning, expression, and type II collagenolytic activity
of matrix metalloproteinase-13 from human osteoarthritic cartilage. J Clin Invest 97:761-768
Morgunova E, Tuuttila A, Bergmann U, Isupov M, Lindqvist Y, Schneider G, Tryggvason K
(1999) Structure of human pro-matrix metalloproteinase-2: activation mechanism revealed.
Science 284:1667-1670
Murphy G, McAlpine CG, Poll CT, Reynolds JJ (1985) Purification and characterization of a bone
metalloproteinase that degrades gelatin and types IV and V collagen. Biochim Biophys Acta
831:49-58
Murphy G, Allan JA, Willenbrock F, Cockett MI, O'Connell JP, Docherty AJP (1992) The role of
the C-terminal domain in collagenase and stromelysin specificity. J Biol Chem 267:9612-9618
Murphy G, Nguyen Q, Cockett MI, Atkinson SJ, Allan JA, Knight CG, Willenbrock F, Docherty
AJP (1994) Assessment of the role of the fibronectin-like domain of gelatinase A by analysis of
a deletion mutant. J Biol Chem 269:6632-6636
Nagai Y, Lapiere CM, Gross J (1966) Tadpole collagenase. Preparation and purification. Bio-
chemistry 5:3123-3130
Nagase H (2001) Substrate specificity of MMPs. In: Clendeninn NJ, Appelt K (eds) Matrix
metalloproteinase inhibitors in cancer therapy. Humana, Totowa, NJ, pp 39-66
Nerenberg PS, Stultz CM (2008) Differential unfolding of alpha1 and alpha2 chains in type I
collagen and collagenolysis. J Mol Biol 382:246-256
Nerenberg PS, Salsas-Escat R, Stultz CM (2008) Do collagenases unwind triple-helical collagen
before peptide bond hydrolysis? Reinterpreting experimental observations with mathematical
models. Proteins 70:1154-1161
O'Farrell TJ, Guo R, Hasegawa H, Pourmotabbed T (2006) Matrix metalloproteinase-1 takes
advantage of the induced fit mechanism to cleave the triple-helical type I collagen molecule.
Biochemistry 45:15411-15418
Ohuchi E, Imai K, Fujii Y, Sato H, Seiki M, Okada Y (1997) Membrane type 1 matrix metallo-
proteinase digests interstitial collagens and other extracellular matrix macromolecules. J Biol
Chem 272:2446-2451
Okada Y, Nagase H, Harris ED Jr (1986) A metalloproteinase from human rheumatoid synovial
fibroblasts that digests connective tissue matrix components. Purification and characterization.
J Biol Chem 261:14245-14255
Okamoto T, Akaike T, Sawa T, Miyamoto Y, van der Vliet A, Maeda H (2001) Activation
of matrix metalloproteinases by peroxynitrite-induced protein S-glutathiolation via disulfide
S-oxide formation. J Biol Chem 276:29596-29602
Orgel JP, Irving TC, Miller A, Wess TJ (2006) Microfibrillar structure of type I collagen in situ.
Proc Natl Acad Sci USA 103:9001-9005
Ottl J, Gabriel D, Murphy G, Knauper V, Tominaga Y, Nagase H, Kroger M, Tschesche H,
Bode W, Moroder L (2000) Recognition and catabolism of synthetic heterotrimeric collagen
peptides by matrix metalloproteinases. Chem Biol 7:119-132
Overall CM (2002) Molecular determinants of metalloproteinase substrate specificity:
matrix metalloproteinase substrate binding domains, modules, and exosites. Mol Biotechnol
22:51-86
Parry DAD, Craig AS (1984) Growth and development of collagen fibrils in connective tissue. In:
Ruggeri A, Motta PM (eds) Ultrastructure of the connective tissue matrix. Springer, Nijhoff
Boston, pp 34-64
Patterson ML, Atkinson SJ, Knauper V, Murphy G (2001) Specific collagenolysis by gelatinase A,
MMP-2, is determined by the hemopexin domain and not the fibronectin-like domain. FEBS
Lett 503:158-162
Pelman GR, Morrison CJ, Overall CM(2005) Pivotal molecular determinants of peptidic and collagen
triple helicase activities reside in the S3 0 subsite of matrix metalloproteinase 8 (MMP-8): the role
of hydrogen bonding potential of ASN188 and TYR189 and the connecting cis bond. J Biol Chem
280:2370-2377
Search WWH ::




Custom Search