Biomedical Engineering Reference
In-Depth Information
16. Lehn, J.M. 1995. Supramolecular Chemistry: Concepts and Perspectives. New York, N.Y.:
VCH Press.
17. Balzani, V., and L. DeCola. 1992. Supramolecular Chemistry. Dordrecht, The Netherlands:
Kluwer Academic Press.
18. Desiraju., G.R. 1996. The Crystal as Supramolecular Entity: Perspectives in Supramolecular
Chemistry, Volume 2. New York, N.Y.: John Wiley & Sons.
19. Desiraju, G.R. 1989. Crystal Engineering: The Design of Organic Solids. New York, N.Y.:
Elsevier.
20. Manne, S., and G.G. Warr. 1999. Supramolecular Structure in Confined Geometries. Washing-
ton, D.C.: American Chemical Society.
21. Jones, M.N., and D. Chapman. 1995. Micelles, Monolayers and Biomembranes. New York,
N.Y.: Wiley-Liss.
22. Wilcoxon, J.P., J.E. Martin, and D.W. Schaefer. 1989. Aggregation in colloidal gold. Physical
Review A 39(5): 2675-2688.
23. Kumar, A., N.L. Abbott, E. Kim, H.A. Biebuyck, and G.M. Whitesides. 1995. Patterned self-
assembled monolayers and mesoscale phenomena. Accounts of Chemical Research 28(5): 219-
226.
24. De Gennes, P.G., and J. Prost. 1993. The Physics of Liquid Crystals, 2nd Ed. New York, N.Y.:
Oxford University Press.
25. Rouvray, D. 2000. Molecular self-assembly. Chemistry in Britain 36(7): 26-29.
26. Huc, I., and J.M. Lehn. 1997. Virtual combinatorial libraries: Dynamic generation of molecular
and supramolecular diversity by self-assembly. Proceedings of the National Academy of Sci-
ences 94(6): 2106-2110.
27. Frechet, J.M.J. 2002. Dendrimers and supramolecular chemistry. Proceedings of the National
Academy of Sciences 99(8): 4782-4787
28. Whitesides, G.M., and J.C. Love. 2001. The art of building small—Researchers are discovering
cheap, efficient ways to make structures only a few billionths of a meter across. Scientific
American 285(3): 38-47.
29. Van Hest, J.C.M., and D.A. Tirrell. 2001. Protein-based materials: Toward a new level of
structural control. Chemical Communications (19): 1897-1904.
30. Yu, S.J.M., C.M. Soto, and D.A. Tirrell. 2000. Nanometer-scale smectic ordering of genetically
engineered rodlike polymers: Synthesis and characterization of monodisperse derivatives of
poly (g-benzyl a, L-glutamate). Journal of the American Chemical Society 122(28): 6552-
6559, and references therein.
31. Limberis, L., and R.J. Stewart. 2000. Toward kinesin-powered microdevices. Nanotechnology
11(2): 47-51.
32. Srinivasarao, M. 1999. Nano-optics in the biological world: Beetles, butterflies, birds, and
moths. Chemical Reviews 99(7): 1935-1961.
33. Miller, J.S., and A.J. Epstein. 2000. Molecule-based magnets—An overview. MRS Bulletin
25(11): 21-28.
34. Ovcharenko, V.I., and R.Z. Sagdeev. 1999. Molecular ferromagnets. Russian Chemical Re-
views 68(5): 345-363.
35. Alivisatos, A.P. 2001. Less is more in medicine—Sophisticated forms of nanotechnology will
find some of their first real-world applications in biomedical research, disease diagnosis, and,
possibly, therapy. Scientific American 285(3): 67-73.
36. Hooks, D.E., T. Fritz, and M.D. Ward. 2001. Epitaxy and molecular organization on solid
substrates. Advanced Materials 13(4): 227-241, and references therein.
37. Choquette, K.D., K.L. Lear, R.P. Schneider, K.M. Geib, J.J. Figiel, and R. Hull. 1995. Fabrica-
tion and performance of selectively oxidized vertical-cavity lasers. IEEE Photonics Technol-
ogy Letters 7(11): 1237-1239.
Search WWH ::




Custom Search