Biomedical Engineering Reference
In-Depth Information
32. Tanaka, T., S. Doi, H. Koezuka, A. Tsumura, and H. Fuchigami. 2000. Tanaka, T., S. Doi, H.
Koezuka, A. Tsumura, and H. Fuchigami, inventors. Mitsubishi Denki Kabushiki Kaisha and
Sumitomo Chemical Company, Limited, assignees. Method of making a field effect transistor.
U.S. Patent 6,060,338, May 9.
33. Postma, H.W.Ch., T. Teepen, Z. Yao, M. Grifoni, and C. Dekker. 2001. Carbon nanotube
single-electron transistors at room temperature. Science 293(5527): 76-79.
34. Liu, X., C. Lee, C. Zhou, and J. Han. 2001. Carbon nanotube field-effect inverters. Applied
Physics Letters 79(20): 3329-3331.
35. Bachtold, A., P. Hadley, T. Nakanishi, and C. Dekker. 2001. Logic circuits with carbon
nanotube transistors. Science 294(5545): 1317-1320.
36. Rotman, D. 2002. The nanotube computer. Available online at <http://www.tech
nologyreview.com/articles/rotman0302.asp> [July 2, 2002].
37. Mathews, R.H, J.P. Sage, T.C.L.G. Sollner, S.D. Calawa, C.L. Chen, L.J. Mahoney, P.A. Maki,
and K.M. Molvar. 1999. A new RTD-FET logic family. Proceedings of the IEEE 87(4): 596-
605.
38. Van Wees, B.J. 1989. Quantum Ballistic and Adiabatic Electron Transport, Studied with Quan-
tum Point Contacts. Thesis, Technische Universiteit Delft, The Netherlands.
39. Altshuler, B.L., P.A. Lee, and R.A. Webb. 1991. Mesoscopic Phenomena in Solids. New York,
N.Y.: Elsevier Science.
40. Terabe, K., T. Hasegawa, T. Nakayama, and M. Aono. 2001. Quantum point contact switch
realized by solid electrochemical reaction. RIKEN Review 37, Nanotechnology in RIKEN I: 7-8.
41. Granatstein, V.L., R. Parker, and C.M. Armstrong. 1999. Vacuum electronics at the dawn of
the twenty-first century. Proceedings of the IEEE 87(5): 702-716.
42. Alles, M., and S. Wilson. 1997. Thin film silicon on insulator: An enabling technology. Semi-
conductor International 20(4): 67-68.
43. European Space Agency, Space Environment Information System. Available online at <http://
www.spenvis.oma.be/spenvis/> [July 2, 2002].
44. Lacoe, R.C., J.V. Osborn, R. Koga, S. Brown, and D.C. Mayer. 2000. Application of hardness-
by-design methodology to radiation-tolerant ASIC technologies. IEEE Transactions on Nuclear
Science 47(6): 2334-2341.
45. Osborn, J.V., R.C. Lacoe, D.C. Mayer, and G. Yabiku. 1998. Total dose hardness of three
commercial CMOS microelectronics foundries. IEEE Transactions on Nuclear Science 45(3):
1458-1463.
46. Lacoe, R.C., J.V. Osborn, R. Koga, S. Brown, and D.C. Mayer. 2000. Application of hardness-
by-design methodology to radiation-tolerant ASIC technologies. IEEE Transactions on Nuclear
Science 47(6): 2334-2341.
47. Rajchman, J.A. 1961. Computer memories, a survey of the state-of-the-art. Proceedings of the
Institute of Radio Engineers 49(1): 104-127.
48. Snider, G.L., A.O. Orlov, I. Amlani, X. Zuo, G.H. Bernstein, C.S. Lent, J.L. Merz, and W.
Porod. 1999. Quantum-dot cellular automata: Review and recent experiments. Journal of Ap-
plied Physics 85(8): 4283-4285.
49. Snider, G.L., A.O. Orlov, I. Amlani, G.H. Bernstein, C.S. Lent, J.L. Merz, and W. Porod. 1999.
Quantum-dot cellular automata. Microelectronic Engineering 47(1-4): 261-263.
50. Cole, T., and J.C. Lusth. 2001. Quantum-dot cellular automata. Progress in Quantum Electron-
ics 25(4): 165-189.
51. Lent, C.S. 2000. Molecular electronics—bypassing the transistor paradigm. Science 288(5471):
1597-1599.
52. Lent, C.S. 2000. Molecular electronics—bypassing the transistor paradigm. Science 288(5471):
1597-1599.
53. Tóth, G., and C.S. Lent. 2001. Quantum computing with quantum-dot cellular automata. Physi-
cal Review A 63(5): article number 052315 (9 pages).
Search WWH ::




Custom Search